An inverse Hall-Petch behavior and improving toughness in translucent nanocrystalline high-entropy zirconate ceramic

被引:11
|
作者
Deng, Mao [1 ,2 ]
Huang, Zhangyi [2 ]
Guo, Wanying [1 ,2 ]
Shi, Yang [1 ,2 ]
Duan, Junjing [3 ,4 ]
Qi, Jianqi [3 ,4 ]
Wang, Haomin [2 ]
机构
[1] Chengdu Univ, Sch Mech Engn, Chengdu 610106, Peoples R China
[2] Chengdu Univ, Inst Adv Study, Chengdu 610106, Peoples R China
[3] Sichuan Univ, Coll Phys, Chengdu 610064, Peoples R China
[4] Sichuan Univ, Key Lab Radiat Phys & Technol, Minist Educ, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
High -entropy ceramic; Zirconate; Nano; -crystalline; Inverse Hall-Petch; Hardness; HIGH-PRESSURE; GRAIN-SIZE; DENSIFICATION;
D O I
10.1016/j.jeurceramsoc.2022.11.052
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Short-range order is a new strengthening effect that can significantly affect the mechanical properties of high -entropy materials. Furthermore, simulation results show that this strengthening effect at a quasi-atomic scale can suppress the grain size softening, leading to the disappearance of inverse Hall-Petch behavior in nano -crystalline high-entropy materials. In this work, the evident inverse Hall-Petch behavior is confirmed in the translucent nanocrystalline high-entropy ceramic (HEC) with an average grain size below 10 nm, fabricated by a high-pressure low-temperature sintering technique. Besides, the as-obtained nanocrystalline HEC also shows an improving fracture toughness compared with the corresponding coarse-crystalline HEC.
引用
收藏
页码:1746 / 1750
页数:5
相关论文
共 50 条
  • [41] Solute segregation effect on grain boundary migration and Hall-Petch relationship in CrMnFeCoNi high-entropy alloy
    Liu, G.
    Lu, D. H.
    Liu, X. W.
    Liu, F. C.
    Yang, Q.
    Du, H.
    Hu, Q.
    Fan, Z. T.
    MATERIALS SCIENCE AND TECHNOLOGY, 2019, 35 (04) : 500 - 508
  • [42] Inverse Hall-Petch behavior in diamantane stabilized bulk nanocrystalline aluminum (vol 60, pg 5850, 2012)
    Maung, Khinlay
    Earthman, James C.
    Mohamed, Farghalli A.
    ACTA MATERIALIA, 2014, 79 : 435 - 435
  • [43] SIMULATION OF INVERSE HALL-PETCH RELATION IN NANOCRYSTALLINE CERAMICS BY DISCRETE DISLOCATION DYNAMICS METHOD
    Bobylev, S., V
    MATERIALS PHYSICS AND MECHANICS, 2020, 46 (01): : 115 - 121
  • [44] Inverse Hall-Petch effect and grain boundary sliding controlled flow in nanocrystalline materials
    Padmanabhan, K. A.
    Dinda, G. P.
    Hahn, H.
    Gleiter, H.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 452 : 462 - 468
  • [45] Reaching unconventionally large Hall-Petch coefficients in face-centered cubic high-entropy alloys
    Li, Jiaxiang
    Yamanaka, Kenta
    Zhang, Yongjie
    Furuhara, Tadashi
    Cao, Guoqin
    Hu, Junhua
    Chiba, Akihiko
    MATERIALS RESEARCH LETTERS, 2024, 12 (06): : 399 - 407
  • [46] Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders
    Volpp, T
    Goring, E
    Kuschke, WM
    Arzt, E
    NANOSTRUCTURED MATERIALS, 1997, 8 (07): : 855 - 865
  • [47] YIELDING BEHAVIOR AND HALL-PETCH COEFFICIENT IN HIGH PURITY IRON
    Gao, Si
    Shibata, Akinobu
    Tsuji, Nobuhiro
    NANOMETALS - STATUS AND PERSPECTIVE, 2012, : 223 - 227
  • [48] Influence of Temperature on the Inverse Hall-Petch Effect in Nanocrystalline Materials: Phase Field Crystal Simulation
    Zhao, Yulong
    Chen, Zheng
    Long, Jian
    Yang, Tao
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2014, 27 (01) : 81 - 86
  • [49] Delay of inverse Hall-Petch relationship of nanocrystalline Cu by modifying grain boundaries with coherent twins
    Hu, Hao
    Fu, Tao
    Li, Chuanying
    Weng, Shayuan
    Zhao, Yinbo
    Chen, Xiang
    Peng, Xianghe
    PHYSICAL REVIEW B, 2022, 105 (02)
  • [50] Revealing the Hall-Petch relationship of Al0.1CoCrFeNi high-entropy alloy and its deformation mechanisms
    Yang, J.
    Qiao, J. W.
    Ma, S. G.
    Wu, G. Y.
    Zhao, D.
    Wang, Z. H.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 795 : 269 - 274