共 50 条
Unmixing the coupling influence from driving factors on vegetation changes considering spatio-temporal heterogeneity in mining areas: a case study in Xilinhot, Inner Mongolia, China
被引:9
|作者:
Li, Jun
[1
]
Xu, Yaling
[1
]
Zhang, Chengye
[1
]
Guo, Junting
[2
]
Wang, Xingjuan
[1
]
Zhang, Yicong
[1
]
机构:
[1] China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[2] State Key Lab Water Resource Protect & Utilizat Co, Beijing 102209, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Fractional vegetation cover;
Mining area;
Geographically and temporally weighted regression;
Driving factors;
Coupling influence;
Contribution;
CLIMATE-CHANGE;
DYNAMICS;
MINE;
ENVIRONMENT;
PREDICTION;
QUALITY;
D O I:
10.1007/s10661-022-10815-0
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Considering the spatio-temporal heterogeneity, this study resolved the coupling influence of a variety of driving factors on vegetation changes in mining areas and discovered the influencing characteristics of the respective driving factors, especially mining activities. First, the spatio-temporal characteristics of FVC (fractional vegetation cover) variation were analyzed in the Sheng-Li mining area. Second, the quantitative relationships among the natural factors (temperature, precipitation, and elevation), artificial factors (mining activities, urban activities), and FVC were constructed by GTWR (geographically and temporally weighted regression) to quantify the contribution of each factor to the change in FVC. Third, the influencing characteristics of the respective driving factors, especially mining activities, were analyzed and summarized. The results show that (1) the FVC change was mainly influenced by natural factors in the areas far from mines and towns and artificial factors in the areas close to mines and towns. (2) The contribution of mining activities to vegetation change (C-Mine) was spatially characterized by two features: (a) distance attenuation characteristics: C-Mine showed logarithmic decrement with distance; (b) directional heterogeneity: C-Mine varied significantly in different directions. In particular, there was a high C-Mine area located near multiple mining areas, and the range of this area shifted to include the mine with more production over time. Overall, unmixing the coupling influence from driving factors with spatio-temporal heterogeneity and achieving a quantitative description of the influencing characteristics in mining areas were the main contributions of this study. The quantification methods and results in this paper provide important support for decision-making on ecological protection and restoration in mining areas.
引用
收藏
页数:19
相关论文