Truncations of Random Unitary Matrices Drawn from Hua-Pickrell Distribution

被引:1
|
作者
Lin, Zhaofeng [1 ]
Qiu, Yanqi [2 ,3 ]
Wang, Kai [4 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200438, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[3] Chinese Acad Sci, Inst Math, AMSS, Beijing 100190, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Determinantal point process; Hua-Pickrell measure; Truncated unitary matrix; Limiting point process; Weighted Bergman kernel; STATISTICAL-THEORY; ENERGY-LEVELS; HARMONIC-ANALYSIS; ENSEMBLES; PHYSICS;
D O I
10.1007/s11785-022-01306-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let U be a random unitary matrix drawn from the Hua-Pickrell distribution mu(U)(n+m)((delta)) on the unitary group U(n + m). We show that the eigenvalues of the truncated unitary matrix [U-i,U- j](1 <= i, j <= n) form a determinantal point process X-n((m,delta)) non the unit disc D for any delta is an element of C satisfying Re delta > -1/2. We also prove that the limiting point process taken by n -> infinity of the determinantal point process X(n)((m,delta) )is always X-[m], independent of delta. Here X[m] is the determinantal point process on 13 with weighted Bergman kernel K-[m](z, w) = 1/(1 - z <(w)over bar >)(m+1) with respect to the reference measure d mu([m])(z) = m/pi (1 - |z|)(m-1)d sigma (z), where d sigma (z) is the Lebesgue measure on D.
引用
收藏
页数:24
相关论文
共 29 条