Truncations of Random Unitary Matrices Drawn from Hua-Pickrell Distribution

被引:1
|
作者
Lin, Zhaofeng [1 ]
Qiu, Yanqi [2 ,3 ]
Wang, Kai [4 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200438, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[3] Chinese Acad Sci, Inst Math, AMSS, Beijing 100190, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Determinantal point process; Hua-Pickrell measure; Truncated unitary matrix; Limiting point process; Weighted Bergman kernel; STATISTICAL-THEORY; ENERGY-LEVELS; HARMONIC-ANALYSIS; ENSEMBLES; PHYSICS;
D O I
10.1007/s11785-022-01306-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let U be a random unitary matrix drawn from the Hua-Pickrell distribution mu(U)(n+m)((delta)) on the unitary group U(n + m). We show that the eigenvalues of the truncated unitary matrix [U-i,U- j](1 <= i, j <= n) form a determinantal point process X-n((m,delta)) non the unit disc D for any delta is an element of C satisfying Re delta > -1/2. We also prove that the limiting point process taken by n -> infinity of the determinantal point process X(n)((m,delta) )is always X-[m], independent of delta. Here X[m] is the determinantal point process on 13 with weighted Bergman kernel K-[m](z, w) = 1/(1 - z <(w)over bar >)(m+1) with respect to the reference measure d mu([m])(z) = m/pi (1 - |z|)(m-1)d sigma (z), where d sigma (z) is the Lebesgue measure on D.
引用
收藏
页数:24
相关论文
共 29 条
  • [1] Truncations of Random Unitary Matrices Drawn from Hua-Pickrell Distribution
    Zhaofeng Lin
    Yanqi Qiu
    Kai Wang
    Complex Analysis and Operator Theory, 2023, 17
  • [2] Infinite random matrices & ergodic decomposition of finite and infinite Hua-Pickrell measures
    Qiu, Yanqi
    ADVANCES IN MATHEMATICS, 2017, 308 : 1209 - 1268
  • [3] Truncations of random unitary matrices
    Zyczkowski, K
    Sommers, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (10): : 2045 - 2057
  • [4] On the eigenvalues of truncations of random unitary matrices
    Meckes, Elizabeth
    Stewart, Kathryn
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [5] Truncations of random unitary matrices and Young tableaux
    Novak, J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [6] Eigenvalue rigidity for truncations of random unitary matrices
    Meckes, Elizabeth
    Stewart, Kathryn
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (01)
  • [7] Matrix Models and Eigenvalue Statistics for Truncations of Classical Ensembles of Random Unitary Matrices
    Rowan Killip
    Rostyslav Kozhan
    Communications in Mathematical Physics, 2017, 349 : 991 - 1027
  • [8] Matrix Models and Eigenvalue Statistics for Truncations of Classical Ensembles of Random Unitary Matrices
    Killip, Rowan
    Kozhan, Rostyslav
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (03) : 991 - 1027
  • [9] Commutators of random matrices from the unitary and orthogonal groups
    Palheta, Pedro H. S.
    Barbosa, Marcelo R.
    Novaes, Marcel
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (11)
  • [10] A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices
    Hiai, F
    Petz, D
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (01): : 71 - 85