Wellbeing Insights in a Data-Driven Future

被引:0
|
作者
Visuri, Aku [1 ]
van Berkel, Niels [2 ]
Tag, Benjamin [3 ]
机构
[1] Univ Oulu, Oulu, Finland
[2] Aalborg Univ, Aalborg, Denmark
[3] Monash Univ, Melbourne, Australia
基金
芬兰科学院;
关键词
Wearable devices; personal wellbeing; data; visualisation; knowledge generation;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article explores meaningful insights users might be able to obtain at the intersection of wearable technology and user-generated data. While wearables have become ubiquitous in monitoring health and well-being, the utility of the data they collect remains limited for end-users. Our TypeAware case study delves into users' challenges in interpreting and deriving actionable insights from their wearable data. The TypeAware application aims to enhance user understanding of digital well-being and sleep quality data. Our results indicate that, despite engagement, participants encountered difficulties generating actionable insights from their data. Leveraging the capabilities of large language models, our results demonstrate the potential for automating insight generation: transforming raw data into meaningful, user-friendly understandings. Ultimately, this work calls for a shift in wearable technology design, advocating for more user-centric approaches that empower individuals to unlock the full potential of their wearable data for improved well-being.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Preparing for the future of work: a novel data-driven approach for the identification of future skills
    Brasse J.
    Förster M.
    Hühn P.
    Klier J.
    Klier M.
    Moestue L.
    [J]. Journal of Business Economics, 2024, 94 (3) : 467 - 500
  • [32] Future Scenarios of the Data-Driven Healthcare Economy in South Korea
    Choi, Ji-Young
    Lee, Hee-Jo
    Lee, Myoung-Jin
    [J]. HEALTHCARE, 2022, 10 (05)
  • [33] History, Architecture, and Future of a Digital Data-Driven Study Assistant
    Weber, Felix
    Schrumpf, Johannes
    Dettmer, Niklas
    Thelen, Tobias
    [J]. International Journal of Emerging Technologies in Learning, 2022, 17 (22) : 246 - 254
  • [34] Data-driven industrial intelligence:Current status and future directions
    Ren L.
    Jia Z.
    Lai L.
    Zhou L.
    Zhang L.
    Li B.
    [J]. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (07): : 1913 - 1939
  • [35] Future of High-Dimensional Data-Driven Exoplanet Science
    Ford, Eric B.
    [J]. INTERNATIONAL MEETING ON HIGH-DIMENSIONAL DATA-DRIVEN SCIENCE (HD3-2015), 2016, 699
  • [36] A data-driven method for future Internet route decision modeling
    Tian, Zhihong
    Su, Shen
    Shi, Wei
    Du, Xiaojiang
    Guizani, Mohsen
    Yu, Xiang
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 95 : 212 - 220
  • [37] Implementing Data-Driven Smart City Applications for Future Cities
    Kaluarachchi, Yamuna
    [J]. SMART CITIES, 2022, 5 (02): : 455 - 474
  • [38] The future of data-driven investigations in light of the Sky ECC operation
    Oerlemans, Jan-Jaap
    Royer, Sofie
    [J]. NEW JOURNAL OF EUROPEAN CRIMINAL LAW, 2023, 14 (04) : 434 - 458
  • [39] OSKARRR: Data-Driven Design Speculations for the Future of Domestic Waste
    Thorp, James
    Richards, Daniel
    Dunn, Nick
    Gorkovenko, Katerina
    Stead, Michael
    [J]. WITH DESIGN: REINVENTING DESIGN MODES, IASDR 2021, 2022, : 2821 - 2835
  • [40] The data-driven future of high-energy-density physics
    Hatfield, Peter W.
    Gaffney, Jim A.
    Anderson, Gemma J.
    Ali, Suzanne
    Antonelli, Luca
    du Pree, Suzan Basegmez
    Citrin, Jonathan
    Fajardo, Marta
    Knapp, Patrick
    Kettle, Brendan
    Kustowski, Bogdan
    MacDonald, Michael J.
    Mariscal, Derek
    Martin, Madison E.
    Nagayama, Taisuke
    Palmer, Charlotte A. J.
    Peterson, J. Luc
    Rose, Steven
    Ruby, J. J.
    Shneider, Carl
    Streeter, Matt J., V
    Trickey, Will
    Williams, Ben
    [J]. NATURE, 2021, 593 (7859) : 351 - 361