Information-Driven Path Planning for Hybrid Aerial Underwater Vehicles

被引:3
|
作者
Zeng, Zheng [1 ,2 ]
Xiong, Chengke [1 ,2 ]
Yuan, Xinyi [1 ]
Zhou, Hexiong [1 ]
Bai, Yuling [1 ]
Jin, Yufei [1 ]
Lu, Di [1 ,2 ]
Lian, Lian [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Oceanog, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Autonomous robots; marine robots; path planning; DIFFERENTIAL EVOLUTION; OPTIMIZATION; ALGORITHMS; NAVIGATION; SURFACE;
D O I
10.1109/JOE.2023.3267783
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This article presents a novel rapidly-exploring adaptive sampling tree algorithm for adaptive sampling missions using a hybrid aerial underwater vehicle (HAUV) in an air-sea 3-D environment. This algorithm innovatively combines the tournament-based point selection sampling strategy, the information heuristic search process, and the framework of the rapidly-exploring random tree algorithm. Hence, the vehicle can be guided to a region of interest to scientists for sampling and generate a collision-free path for maximizing information collection by the HAUV under the constraints of environmental effects of currents or wind and a limited budget. The simulation results show that the fast search adaptive sampling tree algorithm has higher optimization performance, faster solution speed, and better stability than the rapidly-exploring information gathering tree algorithm and the particle swarm optimization algorithm.
引用
收藏
页码:689 / 715
页数:27
相关论文
共 50 条
  • [1] Information-Driven Path Planning
    Shi Bai
    Tixiao Shan
    Fanfei Chen
    Lantao Liu
    Brendan Englot
    [J]. Current Robotics Reports, 2021, 2 (2): : 177 - 188
  • [2] Information-Driven Sensor Path Planning by Approximate Cell Decomposition
    Cai, Chenghui
    Ferrari, Silvia
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (03): : 672 - 689
  • [3] A Hybrid Path Planning Strategy of Autonomous Underwater Vehicles
    Jian, Xinyu
    Zou, Ting
    Vardy, Andrew
    Bose, Neil
    [J]. 2020 IEEE/OES AUTONOMOUS UNDERWATER VEHICLES SYMPOSIUM (AUV), 2020,
  • [4] An environment information-driven online Bi-level path planning algorithm for underwater search and rescue AUV
    Qin, Hongde
    Zhou, Nan
    Han, Shilin
    Xue, Yifan
    [J]. OCEAN ENGINEERING, 2024, 296
  • [5] Online path planning for unmanned aerial vehicles to maximize instantaneous information
    Ergezer, Halit
    Leblebicioglu, Kemal
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2021, 18 (03)
  • [6] Path planning for autonomous underwater vehicles
    Petres, Clement
    Pailhas, Yan
    Patron, Pedro
    Petillot, Yvan
    Evans, Jonathan
    Lane, David
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2007, 23 (02) : 331 - 341
  • [7] Trajectory Planning for Hybrid Unmanned Aerial Underwater Vehicles with Smooth Media Transition
    Pedro M. Pinheiro
    Armando A. Neto
    Ricardo B. Grando
    César B. da Silva
    Vivian M. Aoki
    Dayana S. Cardoso
    Alexandre C. Horn
    Paulo L. J. Drews
    [J]. Journal of Intelligent & Robotic Systems, 2022, 104
  • [8] Trajectory Planning for Hybrid Unmanned Aerial Underwater Vehicles with Smooth Media Transition
    Pinheiro, Pedro M.
    Neto, Armando A.
    Grando, Ricardo B.
    da Silva, Cesar B.
    Aoki, Vivian M.
    Cardoso, Dayana S.
    Horn, Alexandre C.
    Drews Jr, Paulo L. J.
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 104 (03)
  • [9] Path Planning of Unmanned Aerial Vehicles for Farmland Information Monitoring Based on WSN
    Yang, Jing
    Wang, Xiao
    Li, Zetao
    Yang, Ping
    Luo, Xuemei
    Zhang, Kai
    Zhang, Shanshan
    Chen, Lingfang
    [J]. PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 2834 - 2838
  • [10] Information-Driven Path Planning for UAV With Limited Autonomy in Large-Scale Field Monitoring
    Rossello, Nicolas Bono
    Carpio, Renzo Fabrizio
    Gasparri, Andrea
    Garone, Emanuele
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 2450 - 2460