Time-Dependent 4D Quantum Harmonic Oscillator and Reacting Hydrogen Atom

被引:0
|
作者
Gevorkyan, Ashot S. [1 ,2 ]
Bogdanov, Aleksander V. [3 ,4 ]
机构
[1] NAS RA, Inst Informat & Automation Problems, 1 P Sevak St, Yerevan 0014, Armenia
[2] NAS RA, Inst Chem Phys, 5-2 P Sevak St, Yerevan 0014, Armenia
[3] St Petersburg State Univ, Fac Appl Math & Control Proc, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
[4] St Petersburg State Marine Tech Univ, Ctr Adv Digital Technol, Lotsmanskaya D 3, St Petersburg 190121, Russia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
time-dependent 4D quantum oscillator; reference equation method; dynamical symmetry; hydrogen atom in external field; transition S-matrix element;
D O I
10.3390/sym15010252
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the help of low-dimensional reference equations (ordinary differential equations) and the corresponding coordinate transformations, the non-stationary 4D quantum oscillator in an external field is reduced to an autonomous form. The latter, in particular, reflects the existence of a new type of dynamical symmetry that reduces the equation of motion of a non-stationary oscillator to an autonomous form that does not change with time. By imposing an additional constraint on the wave function of the isotropic oscillator, we have obtained the total wave functions of the reacting hydrogen atom in two different cases: (a) when the non-stationary frequency has two asymptotic values and there is no external field; and (b) when, in addition to the non-stationary frequency, an external force acts on the hydrogen atom. The transition S-matrix elements of various elementary atomic-molecular processes are constructed. The probabilities of quantum transitions of the hydrogen atom to others, including new bound states, are studied in detail, taking into account the influence of external forces.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] QUANTUM HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY
    SOLIMENO, S
    DIPORTO, P
    CROSIGNA.B
    JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (10) : 1922 - &
  • [2] Quantum harmonic oscillator with time-dependent mass
    Ramos-Prieto, I
    Espinosa-Zuniga, A.
    Fernandez-Guasti, M.
    Moya-Cessa, H. M.
    MODERN PHYSICS LETTERS B, 2018, 32 (20):
  • [3] A quadratic time-dependent quantum harmonic oscillator
    F. E. Onah
    E. García Herrera
    J. A. Ruelas-Galván
    G. Juárez Rangel
    E. Real Norzagaray
    B. M. Rodríguez-Lara
    Scientific Reports, 13
  • [4] A quadratic time-dependent quantum harmonic oscillator
    Onah, F. E.
    Herrera, E. Garcia
    Ruelas-Galvan, J. A.
    Juarez Rangel, G.
    Real Norzagaray, E.
    Rodriguez-Lara, B. M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Time-dependent diffeomorphisms as quantum canonical transformations and the time-dependent harmonic oscillator
    Mostafazadeh, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (30): : 6495 - 6503
  • [6] TIME-DEPENDENT HARMONIC OSCILLATOR
    SALUSTI, E
    ZIRILLI, F
    LETTERE AL NUOVO CIMENTO, 1970, 4 (21): : 999 - &
  • [7] Quantum states of a generalized time-dependent inverted harmonic oscillator
    Pedrosa, IA
    Guedes, I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (09): : 1379 - 1385
  • [8] Quantum tunneling effect of a time-dependent inverted harmonic oscillator
    Guo, Guang-Jie
    Ren, Zhong-Zhou
    Ju, Guo-Xing
    Guo, Xiao-Yong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (18)
  • [9] New quantum squeezed states for the time-dependent harmonic oscillator
    Nassar, AB
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (03) : S226 - S228
  • [10] Efficient algebraic solution for a time-dependent quantum harmonic oscillator
    Tibaduiza, Daniel M.
    Pires, Luis
    Rego, Andreson L. C.
    Szilard, Daniela
    Zarro, Carlos
    Farina, Carlos
    PHYSICA SCRIPTA, 2020, 95 (10)