Advances in polymer electrolytes for solid-state zinc-air batteries

被引:19
|
作者
Zhang, Pengfei [1 ]
Chen, Zhuo [1 ]
Shang, Nuo [1 ]
Wang, Keliang [1 ,2 ]
Zuo, Yayu [1 ]
Wei, Manhui [1 ]
Wang, Hengwei [1 ]
Zhong, Daiyuan [1 ]
Pei, Pucheng [2 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[2] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
ZN-AIR; HIGH-ENERGY; GEL ELECTROLYTE; SUPERCAPACITORS; FLEXIBILITY; ADDITIVES; HYDROGELS; SURFACE; ANODE; OXIDE;
D O I
10.1039/d3qm00337j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the rapid development in flexible and wearable electronic devices, there is an urgent demand for soft power supplies with high energy density and long service life. In the emerging battery field, a safe, environmentally friendly, and low-cost zinc-air battery can store relatively high electrochemical energy (1084 W h kg(-1)). Therefore, rechargeable zinc-air batteries may become a mainstream trend in the future. As an important part of a solid or quasi-solid-state battery, the performance of the polymer electrolyte directly affects the output performance, cycle stability, and working life of the battery. Therefore, the development of high-quality polymer electrolytes is of great significance for the maturity, scale, and practical application of flexible batteries. In addition, owing to the semi-open configuration and contact structure of flexible zinc-air batteries, interface compatibility between polymer electrolytes and electrodes (zinc electrode and air electrode) is an important factor affecting battery performance. Simultaneously, considering the characteristics of alkaline polymer electrolytes widely used at present, carbon dioxide (CO2) components in the environment also interfere with the running state of the battery, thus weakening the battery's performance. CO2-tolerance has become a key research direction for zinc-air batteries. Based on previous studies on zinc-air batteries, this study reviews the working principle of zinc-air batteries, lists the general assembly structure of the solid zinc-air battery, and based on this summarizes the current outstanding and superior characteristics of polymer electrolytes and the corresponding performance of the solid battery, as well as the interface problems of zinc electrode-electrolyte and air electrode-electrolyte. A new prospect for the future research and development of high-performance solid zinc-air batteries is proposed.
引用
收藏
页码:3994 / 4018
页数:25
相关论文
共 50 条
  • [21] Advances in air manager technology for zinc-air batteries
    Tinker, LA
    SIXTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, 2001, : 319 - 322
  • [22] Air Stability and Interfacial Compatibility of Sulfide Solid Electrolytes for Solid-State Lithium Batteries: Advances and Perspectives
    Cai, Yinghui
    Li, Chunli
    Zhao, Zhikun
    Mu, Daobin
    Wu, Borong
    CHEMELECTROCHEM, 2022, 9 (05)
  • [23] Biomass Solid-State Electrolyte with Abundant Ion and Water Channels for Flexible Zinc-Air Batteries
    Dou, Haozhen
    Xu, Mi
    Zhang, Zhen
    Luo, Dan
    Yu, Aiping
    Chen, Zhongwei
    ADVANCED MATERIALS, 2024, 36 (29)
  • [24] A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc-air batteries
    Fu, Jing
    Zhang, Jing
    Song, Xueping
    Zarrin, Hadis
    Tian, Xiaofei
    Qiao, Jinli
    Rasen, Lathanken
    Li, Kecheng
    Chen, Zhongwei
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) : 663 - 670
  • [25] Recent advances of composite electrolytes for solid-state Li batteries
    Xu, Laiqiang
    Li, Jiayang
    Shuai, Honglei
    Luo, Zheng
    Wang, Baowei
    Fang, Susu
    Zou, Guoqiang
    Hou, Hongshuai
    Peng, Hongjian
    Ji, Xiaobo
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 524 - 548
  • [26] Recent advances of composite electrolytes for solid-state Li batteries
    Laiqiang Xu
    Jiayang Li
    Honglei Shuai
    Zheng Luo
    Baowei Wang
    Susu Fang
    Guoqiang Zou
    Hongshuai Hou
    Hongjian Peng
    Xiaobo Ji
    Journal of Energy Chemistry, 2022, 67 (04) : 524 - 548
  • [27] Gel Polymer-Based Composite Solid-State Electrolyte for Long-Cycle-Life Rechargeable Zinc-Air Batteries
    Li, Wenming
    Wang, Yuxin
    Liu, Renjie
    Chen, Wendi
    Zhang, Hui
    Zhang, Zhongyi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (09) : 3732 - 3739
  • [28] A New Solid-State Zinc-Air Battery for Fast Charge
    Zhao, Siyuan
    Wang, Keliang
    Tang, Shuxian
    Liu, Xiaotian
    Peng, Kelin
    Xiao, Yu
    Chen, Yu
    ENERGY TECHNOLOGY, 2020, 8 (05)
  • [29] Solid-state electrolytes for solid-state lithium-sulfur batteries:Comparisons, advances and prospects
    Xin Liang
    Lulu Wang
    Xiaolong Wu
    Xuyong Feng
    Qiujie Wu
    Yi Sun
    Hongfa Xiang
    Jiazhao Wang
    Journal of Energy Chemistry, 2022, 73 (10) : 370 - 386
  • [30] SOLID ELECTROLYTES AND SOLID-STATE BATTERIES
    LIANG, CC
    CHEMTECH, 1983, 13 (05) : 303 - 305