Advances in polymer electrolytes for solid-state zinc-air batteries

被引:19
|
作者
Zhang, Pengfei [1 ]
Chen, Zhuo [1 ]
Shang, Nuo [1 ]
Wang, Keliang [1 ,2 ]
Zuo, Yayu [1 ]
Wei, Manhui [1 ]
Wang, Hengwei [1 ]
Zhong, Daiyuan [1 ]
Pei, Pucheng [2 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[2] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
ZN-AIR; HIGH-ENERGY; GEL ELECTROLYTE; SUPERCAPACITORS; FLEXIBILITY; ADDITIVES; HYDROGELS; SURFACE; ANODE; OXIDE;
D O I
10.1039/d3qm00337j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the rapid development in flexible and wearable electronic devices, there is an urgent demand for soft power supplies with high energy density and long service life. In the emerging battery field, a safe, environmentally friendly, and low-cost zinc-air battery can store relatively high electrochemical energy (1084 W h kg(-1)). Therefore, rechargeable zinc-air batteries may become a mainstream trend in the future. As an important part of a solid or quasi-solid-state battery, the performance of the polymer electrolyte directly affects the output performance, cycle stability, and working life of the battery. Therefore, the development of high-quality polymer electrolytes is of great significance for the maturity, scale, and practical application of flexible batteries. In addition, owing to the semi-open configuration and contact structure of flexible zinc-air batteries, interface compatibility between polymer electrolytes and electrodes (zinc electrode and air electrode) is an important factor affecting battery performance. Simultaneously, considering the characteristics of alkaline polymer electrolytes widely used at present, carbon dioxide (CO2) components in the environment also interfere with the running state of the battery, thus weakening the battery's performance. CO2-tolerance has become a key research direction for zinc-air batteries. Based on previous studies on zinc-air batteries, this study reviews the working principle of zinc-air batteries, lists the general assembly structure of the solid zinc-air battery, and based on this summarizes the current outstanding and superior characteristics of polymer electrolytes and the corresponding performance of the solid battery, as well as the interface problems of zinc electrode-electrolyte and air electrode-electrolyte. A new prospect for the future research and development of high-performance solid zinc-air batteries is proposed.
引用
收藏
页码:3994 / 4018
页数:25
相关论文
共 50 条
  • [1] A photonic hydrogel for health self-monitoring of solid-state electrolytes in zinc-air batteries
    Zuo, Yayu
    Zhang, Wenxin
    Wei, Manhui
    Zhang, Pengfei
    Zhao, Siyuan
    Pei, Pucheng
    Qiu, Lili
    Wang, Hengwei
    Meng, Zihui
    Wang, Keliang
    ENERGY STORAGE MATERIALS, 2022, 53 : 136 - 147
  • [2] Advanced polymer-based electrolytes in zinc-air batteries
    Liu, Qingqing
    Liu, Ruiting
    He, Chaohui
    Xia, Chenfeng
    Guo, Wei
    Xu, Zheng-Long
    Xia, Bao Yu
    ESCIENCE, 2022, 2 (05): : 453 - 466
  • [3] A Minireview of the Solid-State Electrolytes for Zinc Batteries
    Yao, Wangbing
    Zheng, Zhuoyuan
    Zhou, Jie
    Liu, Dongming
    Song, Jinbao
    Zhu, Yusong
    POLYMERS, 2023, 15 (20)
  • [4] Hierarchically Nanostructured Solid-State Electrolyte for Flexible Rechargeable Zinc-Air Batteries
    Xu, Mi
    Dou, Haozhen
    Zhang, Zhen
    Zheng, Yun
    Ren, Bohua
    Ma, Qianyi
    Wen, Guobin
    Luo, Dan
    Yu, Aiping
    Zhang, Luhong
    Wang, Xin
    Chen, Zhongwei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (23)
  • [5] Advanced Polymer Electrolytes in Solid-State Batteries
    Ningappa, Ningaraju Gejjiganahalli
    Madikere Raghunatha Reddy, Anil Kumar
    Zaghib, Karim
    Batteries, 2024, 10 (12)
  • [6] Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects
    Wu, Feng
    Zhang, Kun
    Liu, Yiran
    Gao, Hongcai
    Bai, Ying
    Wang, Xinran
    Wu, Chuan
    ENERGY STORAGE MATERIALS, 2020, 33 : 26 - 54
  • [7] Essential data for industrially relevant development of bifunctional cathodes and biopolymer electrolytes in solid-state zinc-air secondary batteries
    Frattini, Domenico
    Garcia Gaitan, Estibaliz
    Bustinza Murguialday, Ainhoa
    Armand, Michel
    Ortiz-Vitoriano, Nagore
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (12) : 5039 - 5058
  • [8] A study of alkaline gel polymer electrolytes for rechargeable zinc-air batteries
    Thuy Nguyen Thanh Tran
    Chung, Hyun-Joong
    Ivey, Douglas G.
    ELECTROCHIMICA ACTA, 2019, 327
  • [9] Recent advances in zinc-air batteries
    Li, Yanguang
    Dai, Hongjie
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (15) : 5257 - 5275
  • [10] Advances in sulfide solid-state electrolytes for lithium batteries
    Yao, Mingxuan
    Shi, Jiangtao
    Luo, Anhong
    Zhang, Zheqi
    Zhu, Guisheng
    Xu, Huarui
    Xu, Jiwen
    Jiang, Li
    Jiang, Kunpeng
    ENERGY STORAGE MATERIALS, 2025, 75