Zero-free regions for spectral averages of Hecke L-functions

被引:1
|
作者
Ganguly, Satadal [1 ]
Sandeep, E. M. [2 ]
机构
[1] Indian Stat Inst, 203 B T Rd, Kolkata 700108, West Bengal, India
[2] Indian Stat Inst, North East Ctr, Solmara PO, Tezpur 784501, Assam, India
关键词
Hecke L-functions; non-vanishing; critical strip; integral weight;
D O I
10.1142/S1793042123501051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain an explicit zero-free region for a weighted sum of L-functions over the orthogonal basis of Hecke eigen cusp forms of a large integral weight for the full modular group. We also estimate the number of such forms whose L value does not vanish at a given point inside this zero-free region.
引用
收藏
页码:2151 / 2162
页数:12
相关论文
共 50 条
  • [31] ZERO-FREE REGIONS FOR DIRICHLET SERIES
    Delaunay, C.
    Fricain, E.
    Mosaki, E.
    Robert, O.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (06) : 3227 - 3253
  • [32] Zero-free regions for bicomplex polynomials and related bicomplex entire functions
    Zargar, Bashir Ahmad
    Kumar, Ashish
    Gulzar, M. H.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 743 - 752
  • [33] Properties of Zero-Free Spectral Matrices
    Anderson, Brian D. O.
    Deistler, Manfred
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (10) : 2365 - 2375
  • [34] Hecke operators and derivatives of L-functions
    Diamantis, N
    [J]. COMPOSITIO MATHEMATICA, 2001, 125 (01) : 39 - 54
  • [35] Notes on the arithmetic of Hecke L-functions
    A Raghuram
    [J]. Proceedings - Mathematical Sciences, 132
  • [36] The universality theorem for Hecke L-functions
    Lee, Yoonbok
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 893 - 909
  • [37] Theta liftings and Hecke L-functions
    Yang, TH
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 485 : 25 - 53
  • [38] The universality theorem for Hecke L-functions
    Mishou, H
    [J]. ACTA ARITHMETICA, 2003, 110 (01) : 45 - 71
  • [39] The universality theorem for Hecke L-functions
    Yoonbok Lee
    [J]. Mathematische Zeitschrift, 2012, 271 : 893 - 909
  • [40] (Almost) primitivity of Hecke L-functions
    Giuseppe Molteni
    Jörn Steuding
    [J]. Monatshefte für Mathematik, 2007, 152 : 63 - 71