FLEKS: A flexible particle-in-cell code for multi-scale plasma simulations

被引:4
|
作者
Chen, Yuxi [1 ,2 ]
Toth, Gabor [1 ]
Zhou, Hongyang [1 ]
Wang, Xiantong [1 ]
机构
[1] Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA
关键词
Particle-in-cell; Particle merging; Test particle; Global kinetic simulation; ADAPTIVE MESH REFINEMENT; MODEL; MANAGEMENT;
D O I
10.1016/j.cpc.2023.108714
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The magnetohydrodynamics with embedded particle-in-cell (MHD-EPIC) model has been successfully applied to global magnetospheric simulations in recent years. However, the PIC region was restricted to be one or more static boxes, which is not always sufficient to cover the whole physical structure of interest efficiently. The FLexible Exascale Kinetic Simulator (FLEKS), which is a new PIC code and allows a dynamic PIC region of any shape, is designed to break this restriction. FLEKS is usually used as the PIC component of the MHD with adaptively embedded particle-in-cell (MHD-AEPIC) model. FLEKS supports dynamically activating or deactivating cells to fit the regions of interest during a simulation. An adaptive time-stepping scheme is also introduced to improve the accuracy and efficiency of a long simulation. The particle number per cell may increase or decrease significantly and lead to load imbalance and large statistical noise in the cells with fewer particles. A particle splitting scheme and a particle merging algorithm are designed to limit the change of the particle number and hence improve the accuracy of the simulation as well as load balancing. Both particle splitting and particle merging conserve the total mass, momentum, and energy. FLEKS also contains a test-particle module to enable tracking particle trajectories due to the time-dependent electromagnetic field that is obtained from a global simulation. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Adaptive particle management in a particle-in-cell code
    Welch, D. R.
    Genoni, T. C.
    Clark, R. E.
    Rose, D. V.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (01) : 143 - 155
  • [32] Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL
    Paul, K.
    Dimitrov, D. A.
    Busby, R.
    Bruhwiler, D. L.
    Smithe, D.
    Cary, J. R.
    Kewisch, J.
    Kayran, D.
    Calaga, R.
    Ben-Zvi, I.
    [J]. ADVANCED ACCELERATOR CONCEPTS, 2009, 1086 : 334 - +
  • [33] Multi-scale Simulations for Plasma Processing of Thin Films
    Bhoj, Ananth
    Shah, Kartik
    Megahed, Mustafa
    Kothnur, Prashanth
    Kinder, Ron
    [J]. EUROCVD 17 / CVD 17, 2009, 25 (08): : 719 - 726
  • [34] Particle-in-cell code library for numerical simulation of the ECR source plasma
    Shirkov, G
    Alexandrov, V
    Preisendorf, V
    Shevtsov, V
    Filippov, A
    Komissarov, R
    Mironov, V
    Shirkova, E
    Strekalovsky, O
    Tokareva, N
    Tuzikov, A
    Vatulin, V
    Vasina, E
    Fomin, V
    Anisimov, A
    Veselov, R
    Golubev, A
    Grushin, S
    Povyshev, V
    Sadovoi, A
    Donskoi, E
    Shevelko, V
    Nakagawa, T
    Yano, Y
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (02): : 644 - 646
  • [35] Particle-in-cell code library for numerical simulation of the ECR source plasma
    Shirkov, G
    Alexandrov, V
    Preisendorf, V
    Shevtsov, V
    Filippov, A
    Komissarov, R
    Mironov, V
    Shirkova, E
    Strekalovsky, O
    Tokareva, N
    Tuzikov, A
    Vatulin, V
    Vasina, E
    Fomin, V
    Anisimov, A
    Veselov, R
    Golubev, A
    Grushin, S
    Povyshev, V
    Sadovoi, A
    Donskoi, E
    Nakagawa, T
    Yano, Y
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 205 : 215 - 219
  • [36] sputniPIC: an Implicit Particle-in-Cell Code for Multi-GPU Systems
    Chien, Steven W. D.
    Nylund, Jonas
    Bengtsson, Gabriel
    Peng, Ivy B.
    Podobas, Artur
    Markidis, Stefano
    [J]. 2020 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2020), 2020, : 149 - 156
  • [37] An electrostatic Particle-In-Cell code on multi-block structured meshes
    Meierbachtol, Collin S.
    Svyatskiy, Daniil
    Delzanno, Gian Luca
    Vernon, Louis J.
    Moulton, J. David
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 796 - 823
  • [38] Particle-in-cell code BEAMPATH for beam dynamics simulations in linear accelerators and beamlines
    Batygin, YK
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 539 (03): : 455 - 489
  • [39] SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation
    Derouillat, J.
    Beck, A.
    Perez, F.
    Vinci, T.
    Chiaramello, M.
    Grassi, A.
    Fle, M.
    Bouchard, G.
    Plotnikov, I.
    Aunai, N.
    Dargent, J.
    Riconda, C.
    Grech, M.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 : 351 - 373
  • [40] Kinetic Scale Magnetic Reconnection with a Turbulent Forcing: Particle-in-cell Simulations
    Lu, San
    Lu, Quanming
    Wang, Rongsheng
    Li, Xinmin
    Gao, Xinliang
    Huang, Kai
    Sun, Haomin
    Yang, Yan
    Artemyev, Anton V.
    An, Xin
    Jia, Yingdong
    [J]. ASTROPHYSICAL JOURNAL, 2023, 943 (02):