Trivial colors in colorings of Kneser graphs

被引:0
|
作者
Kiselev, Sergei [1 ]
Kupavskii, Andrey [1 ,2 ]
机构
[1] Moscow Inst Phys & Technol, Moscow, Russia
[2] St Petersburg State Univ, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
Kneser graphs; Kneser colorings; Non -trivial intersecting families; INTERSECTION-THEOREMS; CHROMATIC NUMBER; CONJECTURE; SYSTEMS;
D O I
10.1016/j.disc.2023.113869
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any proper coloring of a Kneser graph KG(n,k) with n-2k+2 colors contains a trivial color class (i.e., a color class consisting of sets that all contain a fixed element), provided n>(2+epsilon)k(2), where epsilon -> 0 as k ->infinity. This bound is essentially tight. This is a consequence of a more general result on the minimum number of non-trivial color classes needed to properly color KG(n,k).
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The toughness of Kneser graphs
    Park, Davin
    Ostuni, Anthony
    Hayes, Nathan
    Banerjee, Amartya
    Wakhare, Tanay
    Wong, Wiseley
    Cioaba, Sebastian
    DISCRETE MATHEMATICS, 2021, 344 (09)
  • [22] On the diameter of Kneser graphs
    Valencia-Pabon, M
    Vera, JC
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 383 - 385
  • [23] Hamiltonian Kneser Graphs
    Ya-Chen Chen
    Z. Füredi
    Combinatorica, 2002, 22 : 147 - 149
  • [24] Pebbling in Kneser Graphs
    Adauto, Matheus
    Bardenova, Viktoriya
    da Cruz, Mariana
    de Figueiredo, Celina
    Hurlbert, Glenn
    Sasaki, Diana
    LATIN 2024: THEORETICAL INFORMATICS, PT II, 2024, 14579 : 46 - 60
  • [25] Path Decompositions of Kneser and Generalized Kneser Graphs
    Rodger, C. A.
    Whitt, Thomas Richard, III
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (03): : 610 - 619
  • [26] Saturation in Kneser Graphs
    Vakhrushev, S. V.
    Zhukovskii, M. E.
    Skorkin, A. Yu.
    MATHEMATICAL NOTES, 2024, 116 (1-2) : 200 - 208
  • [27] Kneser graphs are Hamiltonian
    Merino, Arturo
    Muetze, Torsten
    Namrata
    ADVANCES IN MATHEMATICS, 2025, 468
  • [28] A Generalization of Kneser Graphs
    A. V. Bobu
    A. É. Kupriyanov
    A. M. Raigorodskii
    Mathematical Notes, 2020, 107 : 392 - 403
  • [29] KNESER REPRESENTATIONS OF GRAPHS
    Hamburger, Peter
    Por, Attila
    Walsh, Matt
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (02) : 1071 - 1081
  • [30] Kneser Graphs Are Hamiltonian
    Merino, Arturo
    Mutze, Torsten
    Namrata
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 963 - 970