Comparative Analysis of Energy and CO2 Emission for the Integration of Biomass Gasification with a Dual-Reactor Chemical Looping Hydrogen Production Process

被引:6
|
作者
Wu, Di [1 ]
Gao, Zixiang [1 ]
Wu, Shiliang [1 ]
Xiao, Rui [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
关键词
PERFORMANCE; TECHNOLOGY; GASIFIER; DESIGN; OPTIMIZATION; ELECTRICITY; CONVERSION; CAPTURE; MODELS; SYSTEM;
D O I
10.1021/acs.energyfuels.3c02405
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen is widely recognized as a promising solution for energy systems. However, the increasing demand for hydrogen necessitates the establishment of large-scale production methods. One prospective approach for sustainable green hydrogen production involves the integration of biomass gasification (BG) with chemical looping hydrogen production (CLHP). In this study, a novel BG-CLHP system is comprehensively simulated using the multi-stage Aspen Plus models, where the CLHP module employs a dual-reactor configuration and the oxygen carrier is controlled to circulate between FeO and Fe3O4. Eliminating the air reactor not only simplifies the structure of the system but also significantly enhances the safety and reliability of the hydrogen production process. The simulation results demonstrate that the BG-CLHP system exhibits efficiencies of 45.9, 66.6, and 92.8% for hydrogen production, total energy utilization, and carbon capture, respectively. Remarkably, the oxygen case is comparatively explored to achieve negative emission of CO2. With its exceptional energy utilization efficiency and efficient CO2 separation capability, the BG-CLHP system exhibits considerable potential for development compared to other hydrogen production pathways.
引用
收藏
页码:14033 / 14045
页数:13
相关论文
共 50 条
  • [41] Thermodynamic analysis of a new chemical looping process for syngas production with simultaneous CO2 capture and utilization
    Zhao, Yunlei
    Jin, Bo
    Deng, Zhikai
    Huang, Yangqiang
    Luo, Xiao
    Liang, Zhiwu
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 1685 - 1696
  • [42] Energy and exergy analyses of biomass IGCC power plant using calcium looping gasification with in situ CO2 capture and negative carbon emission
    Han, Long
    Zhao, Jianglin
    Rong, Nai
    Wang, Zhonghui
    Qi, Zhifu
    Shen, Zewei
    Ding, Haoran
    Yu, Heng
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (19) : 23649 - 23666
  • [43] Evaluation of iron based chemical looping for hydrogen and electricity co-production by gasification process with carbon capture and storage
    Cormos, Calin-Cristian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (06) : 2278 - 2289
  • [44] Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process
    Xiang, Wenguo
    Chen, Shiyi
    Xue, Zhipeng
    Sun, Xiaoyan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (16) : 8580 - 8591
  • [45] Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production
    Chaiwatanodom, Paphonwit
    Vivanpatarakij, Supawat
    Assabumrungrat, Suttichai
    APPLIED ENERGY, 2014, 114 : 10 - 17
  • [46] Assessing Energy and CO2 Emission Reduction from Ammonia Production by Chemical Looping as Innovative Carbon Capture Technology
    Chisalita, Dora-Andreea
    Petrescu, Letitia
    Cormos, Ana-Maria
    Cormos, Calin-Cristian
    28TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2018, 43 : 1269 - 1274
  • [47] Integration of biomass gasification and MEA-based CO2 capture for sustainable power and methanol production: Energy, exergy, and economic analysis and optimization
    Nouri, Amirali
    Tohidi, Farzad
    Chitsaz, Ata
    ENERGY, 2025, 319
  • [48] Integration of Biomass Gasification and CO2 Capture in the LCA Model for the Energy, Water and Food Nexus
    Al-Ansari, Tareq
    Korre, Anna
    Nie, Zhenggang
    Shah, Nilay
    26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2016, 38B : 2085 - 2090
  • [49] Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production
    Fan, Junming
    Hong, Hui
    Zhu, Lin
    Jiang, Qiongqiong
    Jin, Hongguang
    APPLIED ENERGY, 2017, 195 : 861 - 876
  • [50] Synergistic solar energy integration for enhanced biomass chemical looping hydrogen production: Thermodynamics and techno-economic analyses
    Chen, Xiangxiang
    Sun, Zhuang
    Kuo, Po-Chih
    Aziz, Muhammad
    CHEMICAL ENGINEERING JOURNAL, 2024, 485