Automatic cell-type harmonization and integration across Human Cell Atlas datasets

被引:17
|
作者
Xu, Chuan [1 ]
Prete, Martin [1 ]
Webb, Simone [1 ,2 ]
Jardine, Laura [1 ,2 ]
Stewart, Benjamin J. [1 ,3 ,4 ,5 ]
Hoo, Regina [1 ]
He, Peng [1 ,6 ]
Meyer, Kerstin B. [1 ]
Teichmann, Sarah A. [1 ,7 ]
机构
[1] Wellcome Genome Campus, Wellcome Sanger Inst, Cambridge CB10 1SA, England
[2] Newcastle Univ, Biosci Inst, Newcastle Upon Tyne NE2 4HH, England
[3] Univ Cambridge, Dept Med, Mol Immun Unit, Cambridge CB2 0QQ, England
[4] Cambridge Univ Hosp NHS Fdn Trust, Cambridge CB2 0QQ, England
[5] NIHR Cambridge Biomed Res Ctr, Cambridge CB2 0QQ, England
[6] Wellcome Genome Campus, European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Cambridge CB10 1SD, England
[7] Univ Cambridge, Cavendish Lab, Dept Phys, Condensed Matter Theory Grp, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
HIPPOCAMPUS; NEUROGENESIS; MEMORY;
D O I
10.1016/j.cell.2023.11.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Harmonizing cell types across the single-cell community and assembling them into a common framework is central to building a standardized Human Cell Atlas. Here, we present CellHint, a predictive clustering tree -based tool to resolve cell-type differences in annotation resolution and technical biases across datasets. CellHint accurately quantifies cell-cell transcriptomic similarities and places cell types into a relationship graph that hierarchically defines shared and unique cell subtypes. Application to multiple immune datasets recapitulates expert-curated annotations. CellHint also reveals underexplored relationships between healthy and diseased lung cell states in eight diseases. Furthermore, we present a workflow for fast cross-dataset integration guided by harmonized cell types and cell hierarchy, which uncovers underappreciated cell types in adult human hippocampus. Finally, we apply CellHint to 12 tissues from 38 datasets, providing a deeply curated cross-tissue database with -3.7 million cells and various machine learning models for automatic cell annotation across human tissues.
引用
收藏
页码:5876 / 5891.e20
页数:37
相关论文
共 50 条
  • [31] An atlas of cell-type-specific interactome networks across 44 human tumor types
    Zekun Li
    Gerui Liu
    Xiaoxiao Yang
    Meng Shu
    Wen Jin
    Yang Tong
    Xiaochuan Liu
    Yuting Wang
    Jiapei Yuan
    Yang Yang
    [J]. Genome Medicine, 16
  • [32] Cell-Type Specific Effects of Opioid Exposure in Human Brain
    Mendez, Emily
    Wei, Haichao
    Hu, Ruifeng
    Stertz, Laura
    Fries, Gabriel R.
    Wu, Xizi
    Najera, Katherine
    Moriel, Karla
    Meyer, Thomas
    Selvaraj, Sudhakar
    Teixeira, Antonio
    Zhao, Zhongming
    Wu, Jiaqian
    Coarfa, Cristian
    Gunaratne, Preethi
    Walss-Bass, Consuelo
    [J]. NEUROPSYCHOPHARMACOLOGY, 2021, 46 (SUPPL 1) : 444 - 444
  • [33] Defining cell-type specificity at the transcriptional level in human disease
    Ju, Wenjun
    Greene, Casey S.
    Eichinger, Felix
    Nair, Viji
    Hodgin, Jeffrey B.
    Bitzer, Markus
    Lee, Young-suk
    Zhu, Qian
    Kehata, Masami
    Li, Min
    Jiang, Song
    Rastaldi, Maria Pia
    Cohen, Clemens D.
    Troyanskaya, Olga G.
    Kretzler, Matthias
    [J]. GENOME RESEARCH, 2013, 23 (11) : 1862 - 1873
  • [34] MACA: marker-based automatic cell-type annotation for single-cell expression data
    Xu, Yang
    Baumgart, Simon J.
    Stegmann, Christian M.
    Hayat, Sikander
    [J]. BIOINFORMATICS, 2022, 38 (06) : 1756 - 1760
  • [35] A pan-tissue DNA methylation atlas enables in silico decomposition of human tissue methylomes at cell-type resolution
    Zhu, Tianyu
    Liu, Jacklyn
    Beck, Stephan
    Pan, Sun
    Capper, David
    Lechner, Matt
    Thirlwell, Chrissie
    Breeze, Charles E.
    Teschendorff, Andrew E.
    [J]. NATURE METHODS, 2022, 19 (03) : 296 - +
  • [36] An atlas of active enhancers across human cell types and tissues
    Robin Andersson
    Claudia Gebhard
    Irene Miguel-Escalada
    Ilka Hoof
    Jette Bornholdt
    Mette Boyd
    Yun Chen
    Xiaobei Zhao
    Christian Schmidl
    Takahiro Suzuki
    Evgenia Ntini
    Erik Arner
    Eivind Valen
    Kang Li
    Lucia Schwarzfischer
    Dagmar Glatz
    Johanna Raithel
    Berit Lilje
    Nicolas Rapin
    Frederik Otzen Bagger
    Mette Jørgensen
    Peter Refsing Andersen
    Nicolas Bertin
    Owen Rackham
    A. Maxwell Burroughs
    J. Kenneth Baillie
    Yuri Ishizu
    Yuri Shimizu
    Erina Furuhata
    Shiori Maeda
    Yutaka Negishi
    Christopher J. Mungall
    Terrence F. Meehan
    Timo Lassmann
    Masayoshi Itoh
    Hideya Kawaji
    Naoto Kondo
    Jun Kawai
    Andreas Lennartsson
    Carsten O. Daub
    Peter Heutink
    David A. Hume
    Torben Heick Jensen
    Harukazu Suzuki
    Yoshihide Hayashizaki
    Ferenc Müller
    Alistair R. R. Forrest
    Piero Carninci
    Michael Rehli
    Albin Sandelin
    [J]. Nature, 2014, 507 : 455 - 461
  • [37] An atlas of active enhancers across human cell types and tissues
    Andersson, Robin
    Gebhard, Claudia
    Miguel-Escalada, Irene
    Hoof, Ilka
    Bornholdt, Jette
    Boyd, Mette
    Chen, Yun
    Zhao, Xiaobei
    Schmidl, Christian
    Suzuki, Takahiro
    Ntini, Evgenia
    Arner, Erik
    Valen, Eivind
    Li, Kang
    Schwarzfischer, Lucia
    Glatz, Dagmar
    Raithel, Johanna
    Lilje, Berit
    Rapin, Nicolas
    Bagger, Frederik Otzen
    Jorgensen, Mette
    Andersen, Peter Refsing
    Bertin, Nicolas
    Rackham, Owen
    Burroughs, A. Maxwell
    Baillie, J. Kenneth
    Ishizu, Yuri
    Shimizu, Yuri
    Furuhata, Erina
    Maeda, Shiori
    Negishi, Yutaka
    Mungall, Christopher J.
    Meehan, Terrence F.
    Lassmann, Timo
    Itoh, Masayoshi
    Kawaji, Hideya
    Kondo, Naoto
    Kawai, Jun
    Lennartsson, Andreas
    Daub, Carsten O.
    Heutink, Peter
    Hume, David A.
    Jensen, Torben Heick
    Suzuki, Harukazu
    Hayashizaki, Yoshihide
    Mueller, Ferenc
    Forrest, Alistair R. R.
    Carninci, Piero
    Rehli, Michael
    Sandelin, Albin
    [J]. NATURE, 2014, 507 (7493) : 455 - +
  • [38] A pan-tissue DNA methylation atlas enables in silico decomposition of human tissue methylomes at cell-type resolution
    Tianyu Zhu
    Jacklyn Liu
    Stephan Beck
    Sun Pan
    David Capper
    Matt Lechner
    Chrissie Thirlwell
    Charles E. Breeze
    Andrew E. Teschendorff
    [J]. Nature Methods, 2022, 19 : 296 - 306
  • [39] Cell-Type Resolved Proteome and Lipidome of Human Lung at Population and Single Cell Levels
    Clair, G.
    Kyle, J. E.
    Zhu, Y.
    Bandyopadhyay, G.
    Zink, E.
    Misra, R.
    Kelly, R.
    Pryhuber, G. S.
    Carson, J.
    Ansong, C.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197
  • [40] Deconvolution reveals cell-type specific transcriptional effects across cancer types
    Cao, Shaolong
    Liu, Rongjie
    Yang, Liuqing
    Ahn, Jaeil
    Chen, Jingxiao
    Wang, Zeya
    Efstathiou, Eleni
    Frigo, Daniel E.
    Zhu, Hongtu
    Wang, Wenyi
    [J]. CANCER RESEARCH, 2019, 79 (13)