Exploring the role of the long short-term memory model in improving multi-step ahead reservoir inflow forecasting

被引:4
|
作者
Luo, Xinran [1 ,2 ]
Liu, Pan [1 ,2 ]
Dong, Qianjin [1 ,2 ]
Zhang, Yanjun [1 ,2 ]
Xie, Kang [1 ,2 ]
Han, Dongyang [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Prov Key Lab Water Syst Sci Sponge City Con, Wuhan, Peoples R China
来源
JOURNAL OF FLOOD RISK MANAGEMENT | 2023年 / 16卷 / 01期
基金
中国国家自然科学基金;
关键词
hydrological modeling; long short-term memory; postprocessing; preprocessing; reservoir inflow forecasting; NEURAL-NETWORK; HYDROLOGICAL ENSEMBLE; STREAMFLOW FORECASTS; WATER LEVELS; PREDICTIONS; SYSTEM; DRIVEN;
D O I
10.1111/jfr3.12854
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Daily inflow forecasting is of vital importance in reservoir economic operation. In the context of hydrometeorological forecasting, the effectiveness of the data-driven models has been demonstrated as bias correctors for physically-based models or direct forecasting models. However, existing studies only highlight the performance improvements provided by the data-driven model, lacking a comprehensive investigation on whether the data-driven model should be used as bias correctors or direct forecasting models. This study constructs long short-term memory (LSTM)-based preprocessing and postprocessing techniques for a hydrological model, which are tested by linear scaling preprocessing and autoregressive (AR) postprocessing models. The integrated model is compared with the LSTM-only model. The Shuibuya and Zuojiang reservoirs in China are selected as case studies. Results indicate that: (1) LSTM-based bias correctors are effective in both preprocessing and postprocessing and (2) the integrated model is comparable to the LSTM-only model when trained with four or more years of data, while it is better than the LSTM-only model when trained with less data. These findings demonstrate that data-driven methods can effectively correct the bias in physically-based model output, and integrating the physical and data-driven models is useful in improving multi-step ahead reservoir inflow forecasting if limited data can be obtained.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [21] Decomposition strategy and attention-based long short-term memory network for multi-step ultra-short-term agricultural power load forecasting
    Yang, Feifei
    Fu, Xueqian
    Yang, Qiang
    Chu, Zheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [22] Multi-Step Ahead Short-Term Electricity Load Forecasting Using VMD-TCN and Error Correction Strategy
    Zhou, Fangze
    Zhou, Hui
    Li, Zhaoyan
    Zhao, Kai
    ENERGIES, 2022, 15 (15)
  • [23] Multi-step forecasting for long-memory processes
    Brodsky, J
    Hurvich, CM
    JOURNAL OF FORECASTING, 1999, 18 (01) : 59 - 75
  • [24] Multi-step ahead wind speed forecasting approach coupling maximal overlap discrete wavelet transform, improved grey wolf optimization algorithm and long short-term memory
    Li, Yiman
    Peng, Tian
    Zhang, Chu
    Sun, Wei
    Hua, Lei
    Ji, Chunlei
    Shahzad, Nazir Muhammad
    RENEWABLE ENERGY, 2022, 196 : 1115 - 1126
  • [25] Multi-step ahead wind speed forecasting approach coupling maximal overlap discrete wavelet transform, improved grey wolf optimization algorithm and long short-term memory
    Li, Yiman
    Peng, Tian
    Zhang, Chu
    Sun, Wei
    Hua, Lei
    Ji, Chunlei
    Muhammad Shahzad, Nazir
    Renewable Energy, 2022, 196 : 1115 - 1126
  • [26] A Short-Term Wind Speed Forecasting Model Based on a Multi-Variable Long Short-Term Memory Network
    Xie, Anqi
    Yang, Hao
    Chen, Jing
    Sheng, Li
    Zhang, Qian
    ATMOSPHERE, 2021, 12 (05)
  • [27] Long-Term and Multi-Step Ahead Call Traffic Forecasting with Temporal Features Mining
    Cao, Bin
    Wu, Jiawei
    Cao, Longchun
    Xu, Yueshen
    Fan, Jing
    MOBILE NETWORKS & APPLICATIONS, 2020, 25 (02): : 701 - 712
  • [28] Long-Term and Multi-Step Ahead Call Traffic Forecasting with Temporal Features Mining
    Bin Cao
    Jiawei Wu
    Longchun Cao
    Yueshen Xu
    Jing Fan
    Mobile Networks and Applications, 2020, 25 : 701 - 712
  • [29] Probabilistic Multi-Step-Ahead Short-Term Water Demand Forecasting with Lasso
    Kley-Holsteg, Jens
    Ziel, Florian
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2020, 146 (10)
  • [30] Multi-step Short-term Load Forecasting Method Based on User Group Division
    Chen C.
    Ma H.
    Chen L.
    Ren B.
    Jin C.
    Zhang T.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (10): : 4213 - 4222