Improved Powered Stochastic Optimization Algorithms for Large-Scale Machine Learning

被引:0
|
作者
Yang, Zhuang [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
基金
中国博士后科学基金;
关键词
Powerball function; stochastic optimization; variance reduction; adaptive learning rate; non-convex optimization; REGULARIZATION; DESCENT; STEP;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic optimization, especially stochastic gradient descent (SGD), is now the workhorse for the vast majority of problems in machine learning. Various strategies, e.g., control variates, adaptive learning rate, momentum technique, etc., have been developed to improve canonical SGD that is of a low convergence rate and the poor generalization in practice. Most of these strategies improve SGD that can be attributed to control the updating direction (e.g., gradient descent or gradient ascent direction), or manipulate the learning rate. Along these two lines, this work first develops and analyzes a novel type of improved powered stochastic gradient descent algorithms from the perspectives of variance reduction, where the updating direction was determined by the Powerball function. Additionally, to bridge the gap between powered stochastic optimization (PSO) and the learning rate, which is now still an open problem for PSO, we propose an adaptive mechanism of updating the learning rate that resorts the Barzilai-Borwein (BB) like scheme, not only for the proposed algorithm, but also for classical PSO algorithms. The theoretical properties of the resulting algorithms for non-convex optimization problems are technically analyzed. Empirical tests using various benchmark data sets indicate the efficiency and robustness of our proposed algorithms.
引用
收藏
页数:29
相关论文
共 50 条
  • [32] Towards provably efficient quantum algorithms for large-scale machine-learning models
    Liu, Junyu
    Liu, Minzhao
    Liu, Jin-Peng
    Ye, Ziyu
    Wang, Yunfei
    Alexeev, Yuri
    Eisert, Jens
    Jiang, Liang
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [33] Towards provably efficient quantum algorithms for large-scale machine-learning models
    Junyu Liu
    Minzhao Liu
    Jin-Peng Liu
    Ziyu Ye
    Yunfei Wang
    Yuri Alexeev
    Jens Eisert
    Liang Jiang
    [J]. Nature Communications, 15
  • [34] Efficient Machine Learning On Large-Scale Graphs
    Erickson, Parker
    Lee, Victor E.
    Shi, Feng
    Tang, Jiliang
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4788 - 4789
  • [35] Large-scale kernel extreme learning machine
    Deng, Wan-Yu
    Zheng, Qing-Hua
    Chen, Lin
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2014, 37 (11): : 2235 - 2246
  • [36] Machine learning for large-scale MOF screening
    Coupry, Damien
    Groot, Laurens
    Addicoat, Matthew
    Heine, Thomas
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [37] Large-Scale Machine Learning and Neuroimaging in Psychiatry
    Thompson, Paul
    [J]. BIOLOGICAL PSYCHIATRY, 2018, 83 (09) : S51 - S51
  • [38] Coding for Large-Scale Distributed Machine Learning
    Xiao, Ming
    Skoglund, Mikael
    [J]. ENTROPY, 2022, 24 (09)
  • [39] Robust Large-Scale Machine Learning in the Cloud
    Rendle, Steffen
    Fetterly, Dennis
    Shekita, Eugene J.
    Su, Bor-yiing
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1125 - 1134
  • [40] Large-scale Machine Learning over Graphs
    Yang, Yiming
    [J]. PROCEEDINGS OF THE 2018 ACM SIGIR INTERNATIONAL CONFERENCE ON THEORY OF INFORMATION RETRIEVAL (ICTIR'18), 2018, : 9 - 9