Optical conductivity of bilayer dice lattices

被引:5
|
作者
Sukhachov, P. O. [1 ]
Oriekhov, D. O. [2 ]
Gorbar, E. V. [3 ,4 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[3] Kyiv Natl Taras Shevchenko Univ, Fac Phys, 64-13 Volodymyrska St, UA-01601 Kiev, Ukraine
[4] Bogolyubov Inst Theoret Phys, 14-b Metrolohichna St, UA-03143 Kiev, Ukraine
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
CHIRAL TOPOLOGICAL SEMIMETAL;
D O I
10.1103/PhysRevB.108.075167
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We calculate optical conductivity for bilayer dice lattices in commensurate vertically aligned stackings. The interband optical conductivity reveals a rich activation behavior unique for each of the four stackings. We found that the intermediate energy band, which corresponds to the flat band of a single-layer dice lattice, plays a different role for different stackings. The interband selection rules, which are crucial for the single-layer lattice, may become lifted in bilayer lattices. The results for effective and tight-binding models are found to be in qualitative agreement for some of the stackings and the reasons for the discrepancies for others are identified. Our findings propose optical conductivity as an effective tool to distinguish between different stackings in bilayer dice lattices.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Superfluidity of a dipolar Fermi gas in 2D optical lattices bilayer
    Camacho-Guardian, A.
    Paredes, R.
    ANNALEN DER PHYSIK, 2016, 528 (11-12) : 778 - 784
  • [32] Anisotropic optical conductivity induced by magnetic atoms embedded in honeycomb lattices
    Nualpijit, Phusit
    Soodchomshom, Bumned
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 586
  • [33] Real and Imaginary Part of Conductivity of Strongly Interacting Bosons in Optical Lattices
    Grygiel, B.
    Patucha, K.
    Zaleski, T. A.
    ACTA PHYSICA POLONICA A, 2019, 135 (01) : 69 - 73
  • [34] Magneto-optical conductivity of silicene and other buckled honeycomb lattices
    Tabert, C. J.
    Nicol, E. J.
    PHYSICAL REVIEW B, 2013, 88 (08)
  • [35] Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry
    Chang, You-Chia
    Liu, Chang-Hua
    Liu, Che-Hung
    Zhong, Zhaohui
    Norris, Theodore B.
    APPLIED PHYSICS LETTERS, 2014, 104 (26)
  • [36] Effects of heterostrain and lattice relaxation on the optical conductivity of twisted bilayer graphene
    Dai, Zhen-Bing
    He, Yan
    Li, Zhiqiang
    PHYSICAL REVIEW B, 2021, 104 (04)
  • [37] Bound states and Cooper pairs of molecules in 2D optical lattices bilayer
    Camacho-Guardian, A.
    Dominguez-Castro, G. A.
    Paredes, R.
    ANNALEN DER PHYSIK, 2016, 528 (7-8) : 580 - 587
  • [38] Conductivity of strongly correlated bosons in optical lattices in an Abelian synthetic magnetic field
    Sajna, A. S.
    Polak, T. P.
    Micnas, R.
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [39] Van Hove Singularities and Excitonic Effects in the Optical Conductivity of Twisted Bilayer Graphene
    Havener, Robin W.
    Liang, Yufeng
    Brown, Lola
    Yang, Li
    Park, Jiwoong
    NANO LETTERS, 2014, 14 (06) : 3353 - 3357
  • [40] Nanoscale Optical Conductivity Imaging of Double-Moire Twisted Bilayer Graphene
    Cui, Songbin
    Jiang, Chengxin
    Zhan, Zhen
    Wilson, Ty
    Zhang, Naipeng
    Xie, Xiaoming
    Yuan, Shengjun
    Wang, Haomin
    Lewandowski, Cyprian
    Ni, Guangxin
    NANO LETTERS, 2024, 24 (37) : 11490 - 11496