A Semi-parametric Density Estimation with Application in Clustering

被引:0
|
作者
Salehi, Mahdi [1 ,2 ]
Bekker, Andriette [2 ]
Arashi, Mohammad [3 ]
机构
[1] Univ Neyshabur, Dept Math & Stat, Neyshabur, Iran
[2] Univ Pretoria, Dept Stat, Pretoria, South Africa
[3] Ferdowsi Univ Mashhad, Dept Stat, Mashhad, Iran
基金
新加坡国家研究基金会;
关键词
Asymmetric kernels; Boundary bias; Density-based clustering; Density-based Silhouette; Kernel density estimation; Optimum bandwidth; BETA KERNEL GRADUATION; MIXTURES;
D O I
10.1007/s00357-022-09425-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The idea behind density-based clustering is to associate groups to the connected components of the level sets of the density of the data to be estimated by a nonparametric method. This approach claims some advantages over both distance- and model-based clustering. Some researchers developed this technique by proposing a graph theory-based method for identifying local modes of the underlying density being estimated by the well-known kernel density estimation (KDE) with normal and t kernels. The present work proposes a semi-parametric KDE with a more flexible family of kernels including skew-normal (SN) and skew-t (ST). We show that the proposed estimator not only reduces boundary bias but it is also closer to the actual density compared to that of the usual estimator employing the Gaussian kernel. Finding optimal bandwidth for one-dimensional and multidimensional cases under the mentioned asymmetric kernels is another main result of this paper where we shrink the bandwidth more than the one obtained under the normal assumption. Finally, through a comprehensive numerical study, we will illustrate the application of the proposed semi-parametric KDE on the density-based clustering using some simulated and real data sets.
引用
收藏
页码:52 / 78
页数:27
相关论文
共 50 条
  • [31] Sparse Semi-Parametric Estimation of Harmonic Chirp Signals
    Sward, Johan
    Brynolfsson, Johan
    Jakobsson, Andreas
    Hansson-Sandsten, Maria
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (07) : 1798 - 1807
  • [32] Semi-parametric estimation and condition-based maintenance
    Fouladirad, M.
    Grall, A.
    Paroissin, C.
    [J]. ADVANCES IN SAFETY, RELIABILITY AND RISK MANAGEMENT, 2012, : 957 - 961
  • [33] Birnbaum-Saunders Semi-Parametric Additive Modeling: Estimation, Smoothing, Diagnostics, and Application
    Carcamo, Esteban
    Marchant, Carolina
    Ibacache-Pulgar, German
    Leiva, Victor
    [J]. REVSTAT-STATISTICAL JOURNAL, 2024, 22 (02) : 211 - 237
  • [34] Hybrid semi-parametric modeling of biological systems: Application to spectroscopic data for the estimation of concentrations
    von Stosch, M.
    Oliveira, R.
    Peres, J.
    Feyo de Azevedo, S.
    [J]. 20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 1021 - 1026
  • [35] A semi-parametric approach for mixture models: Application to local false discovery rate estimation
    Robin, Stephane
    Bar-Hen, Avner
    Daudin, Jean-Jacques
    Pierre, Laurent
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 5483 - 5493
  • [36] Semi-parametric estimation without searching in function space: application to in vivo metabolite quantitation
    Popa, E.
    Karras, D. A.
    Mertzios, B. G.
    Sima, D. M.
    de Beer, R.
    van Ormondt, D.
    Graveron-Demilly, D.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2011, 22 (11)
  • [37] Semi-parametric Bayesian density estimation using ranked set sample in the presence of ranking error
    Chacko, Manoj
    Ghosh, Kaushik
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2016, 23 (02) : 301 - 316
  • [38] Minimum entropy estimation in semi-parametric models:: a candidate for adaptive estimation?
    Pronzato, L
    Thierry, É
    Wolsztynski, É
    [J]. MODA 7 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, PROCEEDINGS, 2004, : 125 - 132
  • [39] INDEPENDENT VECTOR ANALYSIS USING SEMI-PARAMETRIC DENSITY ESTIMATION VIA MULTIVARIATE ENTROPY MAXIMIZATION
    Damasceno, Lucas P.
    Cavalcante, Charles C.
    Adali, Tulay
    Boukouvalas, Zois
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3715 - 3719
  • [40] A semi-parametric model for lactation curves: Development and application
    Madouasse, A.
    Browne, W. J.
    Huxley, J. N.
    Toni, F.
    Green, M. J.
    [J]. PREVENTIVE VETERINARY MEDICINE, 2012, 105 (1-2) : 38 - 48