Collaborative networks of transformers and convolutional neural networks are powerful and versatile learners for accurate 3D medical image segmentation

被引:3
|
作者
Chen, Yong [1 ]
Lu, Xuesong [1 ]
Xie, Qinlan [1 ]
机构
[1] South Cent Minzu Univ, Sch Biomed Engn, Wuhan 430074, Hubei, Peoples R China
关键词
Convolutional neural networks; Transformers; Interlaced collaboration; Versatile models; 3D medical image segmentation;
D O I
10.1016/j.compbiomed.2023.107228
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Integrating transformers and convolutional neural networks represents a crucial and cutting-edge approach for tackling medical image segmentation problems. Nonetheless, the existing hybrid methods fail to fully leverage the strengths of both operators. During the Patch Embedding, the patch projection method ignores the two-dimensional structure and local spatial information within each patch, while the fixed patch size cannot capture features with rich representation effectively. Moreover, the calculation of self-attention results in attention diffusion, hindering the provision of precise details to the decoder while maintaining feature consistency. Lastly, none of the existing methods establish an efficient multi-scale modeling concept. To address these issues, we design the Collaborative Networks of Transformers and Convolutional neural networks (TC-CoNet), which is generally used for accurate 3D medical image segmentation. First, we elaborately design precise patch embedding to generate 3D features with accurate spatial position information, laying a solid foundation for subsequent learning. The encoder-decoder backbone network is then constructed by TC-CoNet in an interlaced combination to properly incorporate long-range dependencies and hierarchical object concepts at various scales. Furthermore, we employ the constricted attention bridge to constrict attention to local features, allowing us to accurately guide the recovery of detailed information while maintaining feature consistency. Finally, atrous spatial pyramid pooling is applied to high-level feature map to establish the concept of multi-scale objects. On five challenging datasets, including Synapse, ACDC, brain tumor segmentation, cardiac left atrium segmentation, and lung tumor segmentation, the extensive experiments demonstrate that TC-CoNet outperforms state-of-the-art approaches in terms of superiority, migration, and strong generalization. These illustrate in full the efficacy of the proposed transformers and convolutional neural networks combination for medical image segmentation. Our code is freely available at: https://github.com/YongChen-Exact/TC-CoNet.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation
    Noothout, Julia M. H.
    Lessmann, Nikolas
    van Eede, Matthijs C.
    van Harten, Louis D.
    Sogancioglu, Ecem
    Heslinga, Friso G.
    Veta, Mitko
    van Ginneken, Bram
    Isgum, Ivana
    JOURNAL OF MEDICAL IMAGING, 2022, 9 (05)
  • [22] Linear and Deformable Image Registration with 3D Convolutional Neural Networks
    Stergios, Christodoulidis
    Mihir, Sahasrabudhe
    Maria, Vakalopoulou
    Guillaume, Chassagnon
    Marie-Pierre, Revel
    Stavroula, Mougiakakou
    Nikos, Paragios
    IMAGE ANALYSIS FOR MOVING ORGAN, BREAST, AND THORACIC IMAGES, 2018, 11040 : 13 - 22
  • [23] Enhancing the ability of convolutional neural networks for remote sensing image segmentation using transformers
    Barr M.
    Neural Computing and Applications, 2024, 36 (22) : 13605 - 13616
  • [24] A Separate 3D Convolutional Neural Network Architecture for 3D Medical Image Semantic Segmentation
    Dong, Shidu
    Liu, Zhi
    Wang, Huaqiu
    Zhang, Yihao
    Cui, Shaoguo
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (08) : 1705 - 1716
  • [25] 3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks
    Xu, Xiaojie
    Liu, Chang
    Zheng, Youyi
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (07) : 2336 - 2348
  • [26] Recurrent Convolutional Neural Networks for 3D Mandible Segmentation in Computed Tomography
    Qiu, Bingjiang
    Guo, Jiapan
    Kraeima, Joep
    Glas, Haye Hendrik
    Zhang, Weichuan
    Borra, Ronald J. H.
    Witjes, Max Johannes Hendrikus
    van Ooijen, Peter M. A.
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (06):
  • [27] Fully automated condyle segmentation using 3D convolutional neural networks
    Nayansi Jha
    Taehun Kim
    Sungwon Ham
    Seung-Hak Baek
    Sang-Jin Sung
    Yoon-Ji Kim
    Namkug Kim
    Scientific Reports, 12
  • [28] Segmentation of Chronic Subdural Hematomas Using 3D Convolutional Neural Networks
    Kellogg, Ryan T.
    Levitt, Michael
    Barros, Guilherme
    Sen, Rajeev
    Bass, David
    Mason, James
    Vargas, Jan
    STROKE, 2021, 52
  • [29] Segmentation of Chronic Subdural Hematomas Using 3D Convolutional Neural Networks
    Kellogg, Ryan T.
    Vargas, Jan
    Barros, Guilherme
    Sen, Rajeev
    Bass, David
    Mason, J. Ryan
    Levitt, Michael
    WORLD NEUROSURGERY, 2021, 148 : E58 - E65
  • [30] Fully automated condyle segmentation using 3D convolutional neural networks
    Jha, Nayansi
    Kim, Taehun
    Ham, Sungwon
    Baek, Seung-Hak
    Sung, Sang-Jin
    Kim, Yoon-Ji
    Kim, Namkug
    SCIENTIFIC REPORTS, 2022, 12 (01)