Collaborative networks of transformers and convolutional neural networks are powerful and versatile learners for accurate 3D medical image segmentation

被引:3
|
作者
Chen, Yong [1 ]
Lu, Xuesong [1 ]
Xie, Qinlan [1 ]
机构
[1] South Cent Minzu Univ, Sch Biomed Engn, Wuhan 430074, Hubei, Peoples R China
关键词
Convolutional neural networks; Transformers; Interlaced collaboration; Versatile models; 3D medical image segmentation;
D O I
10.1016/j.compbiomed.2023.107228
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Integrating transformers and convolutional neural networks represents a crucial and cutting-edge approach for tackling medical image segmentation problems. Nonetheless, the existing hybrid methods fail to fully leverage the strengths of both operators. During the Patch Embedding, the patch projection method ignores the two-dimensional structure and local spatial information within each patch, while the fixed patch size cannot capture features with rich representation effectively. Moreover, the calculation of self-attention results in attention diffusion, hindering the provision of precise details to the decoder while maintaining feature consistency. Lastly, none of the existing methods establish an efficient multi-scale modeling concept. To address these issues, we design the Collaborative Networks of Transformers and Convolutional neural networks (TC-CoNet), which is generally used for accurate 3D medical image segmentation. First, we elaborately design precise patch embedding to generate 3D features with accurate spatial position information, laying a solid foundation for subsequent learning. The encoder-decoder backbone network is then constructed by TC-CoNet in an interlaced combination to properly incorporate long-range dependencies and hierarchical object concepts at various scales. Furthermore, we employ the constricted attention bridge to constrict attention to local features, allowing us to accurately guide the recovery of detailed information while maintaining feature consistency. Finally, atrous spatial pyramid pooling is applied to high-level feature map to establish the concept of multi-scale objects. On five challenging datasets, including Synapse, ACDC, brain tumor segmentation, cardiac left atrium segmentation, and lung tumor segmentation, the extensive experiments demonstrate that TC-CoNet outperforms state-of-the-art approaches in terms of superiority, migration, and strong generalization. These illustrate in full the efficacy of the proposed transformers and convolutional neural networks combination for medical image segmentation. Our code is freely available at: https://github.com/YongChen-Exact/TC-CoNet.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Medical image segmentation with 3D convolutional neural networks: A survey
    Niyas, S.
    Pawan, S. J.
    Kumar, M. Anand
    Rajan, Jeny
    [J]. NEUROCOMPUTING, 2022, 493 : 397 - 413
  • [2] Small Convolutional Neural Networks for Efficient 3D Medical Image Segmentation
    Celaya, A.
    Actor, J.
    Muthusivarajan, R.
    Gates, E.
    Chung, C.
    Schellingerhout, D.
    Riviere, B.
    Fuentes, D.
    [J]. MEDICAL PHYSICS, 2021, 48 (06)
  • [3] 2D to 3D Evolutionary Deep Convolutional Neural Networks for Medical Image Segmentation
    Hassanzadeh, Tahereh
    Essam, Daryl
    Sarker, Ruhul
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (02) : 712 - 721
  • [4] Improving Semantic Segmentation of 3D Medical Images on 3D Convolutional Neural Networks
    Marquez Herrera, Alejandra
    Cuadros-Vargas, Alex J.
    Pedrini, Helio
    [J]. 2019 XLV LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2019), 2019,
  • [5] Evolutionary Deep Attention Convolutional Neural Networks for 2D and 3D Medical Image Segmentation
    Tahereh Hassanzadeh
    Daryl Essam
    Ruhul Sarker
    [J]. Journal of Digital Imaging, 2021, 34 : 1387 - 1404
  • [6] Evolutionary Deep Attention Convolutional Neural Networks for 2D and 3D Medical Image Segmentation
    Hassanzadeh, Tahereh
    Essam, Daryl
    Sarker, Ruhul
    [J]. JOURNAL OF DIGITAL IMAGING, 2021, 34 (06) : 1387 - 1404
  • [7] An application of cascaded 3D fully convolutional networks for medical image segmentation
    Roth, Holger R.
    Oda, Hirohisa
    Zhou, Xiangrong
    Shimizu, Natsuki
    Yang, Ying
    Hayashi, Yuichiro
    Oda, Masahiro
    Fujiwara, Michitaka
    Misawa, Kazunari
    Mori, Kensaku
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 66 : 90 - 99
  • [8] Combining Fully Convolutional and Recurrent Neural Networks for 3D Biomedical Image Segmentation
    Chen, Jianxu
    Yang, Lin
    Zhang, Yizhe
    Alber, Mark
    Chen, Danny Z.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [9] Hepatic artery segmentation with 3D convolutional neural networks
    Kock, Farina
    Chlebus, Grzegorz
    Thielke, Felix
    Schenk, Andrea
    Meine, Hans
    [J]. MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [10] 3D Prostate Segmentation in MR Image Using 3D Deeply Supervised Convolutional Neural Networks
    Yang, X.
    Lei, Y.
    Wang, T.
    Jiang, X.
    Jani, A.
    Mao, H.
    Curran, N. V.
    Patel, P.
    Liu, T.
    Wang, B.
    [J]. MEDICAL PHYSICS, 2018, 45 (06) : E582 - E583