Ecoflex Flexible Array of Triboelectric Nanogenerators for Gait Monitoring Alarm Warning Applications

被引:7
|
作者
Zheng, Qinglan [1 ]
Jia, Changjun [1 ]
Sun, Fengxin [1 ]
Zhang, Mengqi [1 ]
Wen, Yuzhang [1 ]
Xie, Zhenning [1 ]
Wang, Junxiao [2 ]
Liu, Bing [3 ]
Mao, Yupeng [1 ,2 ]
Zhao, Chongle [1 ]
机构
[1] Northeastern Univ, Phys Educ Dept, Shenyang 110819, Peoples R China
[2] Beijing Sport Univ, Sch Strength & Conditioning Training, Beijing 100084, Peoples R China
[3] Shenyang Sport Univ, Sch Martial Arts & Dance, Shenyang 110102, Peoples R China
关键词
triboelectric nanogenerator; human mechanical energy collection; movement monitoring; rehabilitation monitoring; SENSORS; SYSTEMS; ENERGY;
D O I
10.3390/electronics12153226
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of self-powered arrays of tribological nanogenerators (TENGs) that harvest mechanical energy for data collection has ushered in a promising avenue for human motion monitoring. This emerging trend is poised to shape the future landscape of biomechanical study. However, when we try to monitor various regions of the foot across disparate environments simultaneously, it poses a number of problems, such as the lack of satisfactory waterproofing, suboptimal heat resistance, inaccurate monitoring capacity, and the inability to transmit data wirelessly. To overcome these issues, we have developed an array of sensors affixed to the insole's surface to adeptly monitor movement gait patterns and alert users to falls using self-powered triboelectric nanogenerators (TENGs). Each sensor cell on this sensor works as an individual air gap TENG (FWF-TENG), namely flexible, waterproof, and fast response, composed of an Ecoflex single-electrode array. Each FWF-TENG boasts a fast response time of 28 ms, which is sufficient to quickly monitor pressure changes during various badminton activities. Importantly, these sensors can persistently generate electrical signals at 70%RH humidity. Data obtained from these sensors can be transmitted to an upper computer intelligent terminal wirelessly through multi-grouped FHW-ENG sensing terminals in real time to achieve human-computer interaction applications, including motion technical determinations, feedback, and fall alerts. As a result, the interconnected TENG arrays have broad potential applications, including gait rehabilitation monitoring, motion technique identification, and fall alarm applications.
引用
收藏
页数:12
相关论文
共 42 条
  • [41] Nickel-Oxide-Doped Polyvinylidene Fluoride Nanofiber-Based Flexible Triboelectric Nanogenerator for Energy Harvesting and Healthcare Monitoring Applications
    Venkatesan, Hema Malini
    Arun, Anand Prabu
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (02) : 1161 - 1173
  • [42] Aurivillius-Type SrBi4Ti4O15/PGA Composite Film-Based Flexible Triboelectric Nanogenerators for Energy Harvesting/Storage and Multipurpose Tap-Indication Transducer Applications
    Kurakula, Anand
    Paranjape, Mandar Vasant
    Manchi, Punnarao
    Arbaz, Shaik Junied
    Gujjala, Lohit Kumar Srinivas
    Graham, Sontyana Adonijah
    Kavarthapu, Venkata Siva
    Yu, Jae Su
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (36) : 48246 - 48256