A generalized scalar auxiliary variable method for the time-dependent Ginzburg-Landau equations

被引:1
|
作者
Si, Zhiyong [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
基金
中国国家自然科学基金;
关键词
time-dependent Ginzburg-Landau equation; generalized scalar auxiliary variable algorithm; maximum bound principle; energy stability; GALERKIN FEMS; EFFICIENT; SCHEMES; MODEL;
D O I
10.1007/s10473-024-0215-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper develops a generalized scalar auxiliary variable (SAV) method for the time-dependent Ginzburg-Landau equations. The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations. In this method, the system is decoupled and linearized to avoid solving the non-linear equation at each step. The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability, and this is confirmed by the numerical result, and also shows that the numerical algorithm is stable.
引用
收藏
页码:650 / 670
页数:21
相关论文
共 50 条
  • [31] Time-dependent Ginzburg-Landau equations for rotating superconductors with paramagnetic impurities
    Shahabasyan, K. M.
    Shahabasyan, M. K.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2012, 47 (06) : 257 - 259
  • [32] Time-periodic solutions of the time-dependent Ginzburg-Landau equations of superconductivity
    Fouzi Zaouch
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 : 905 - 918
  • [33] A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations
    Li, Buyang
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 238 - 250
  • [34] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
    Li, Minsi
    Gu, Jiahong
    Du, Long
    Zhong, Hongwei
    Zhou, Lijuan
    Chen, Qinghua
    CHINESE PHYSICS B, 2020, 29 (03)
  • [35] Time-periodic solutions of the time-dependent Ginzburg-Landau equations of superconductivity
    Zaouch, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (06): : 905 - 918
  • [36] Asymptotics for the time dependent Ginzburg-Landau equations
    Fan, JS
    Ding, SJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) : 241 - 255
  • [37] Extended Time-Dependent Ginzburg-Landau Theory
    Grigorishin, Konstantin V.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2021, 203 (3-4) : 262 - 308
  • [38] Universal time-dependent Ginzburg-Landau theory
    Kapustin, Anton
    Mrini, Luke
    PHYSICAL REVIEW B, 2023, 107 (14)
  • [39] Time-dependent Ginzburg-Landau theory and duality
    Schakel, AMJ
    TOPOLOGICAL DEFECTS AND THE NON-EQUILIBRIUM DYNAMICS OF SYMMETRY BREAKING PHASE TRANSITIONS, 2000, 549 : 213 - 238
  • [40] Finite-element method to the d-wave time-dependent Ginzburg-Landau equations
    Wang, QH
    Wang, ZD
    PHYSICA C, 1997, 282 : 1967 - 1968