Sensitivity Analysis of Direct Numerical Simulation of a Spatially Developing Turbulent Mixing Layer to the Domain Dimensions

被引:1
|
作者
Colmenares, Juan D. [1 ,4 ]
Abuhegazy, Mohamed [1 ]
Peet, Yulia T. [2 ]
Murman, Scott M. [3 ]
Poroseva, Svetlana V. [1 ]
机构
[1] Univ New Mexico, Mech Engn Dept, Albuquerque, NM 87131 USA
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85281 USA
[3] NASA Ames Res Ctr, Moffett Field, CA 94035 USA
[4] Gen Atom, 3550 Gen Atom Court, San Diego, CA 92121 USA
关键词
FINE-SCALE EDDIES; 3-DIMENSIONAL EVOLUTION; REYNOLDS-NUMBERS; PLANE; DYNAMICS; TRANSITION; FLOW;
D O I
10.1115/1.4062770
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding spatial development of a turbulent mixing layer is essential for many engineering applications. However, the flow development is difficult to replicate in physical or numerical experiments. For this reason, the most attractive method for the mixing layer analysis is the direct numerical simulation (DNS), with the most control over the simulation inputs and free from modeling assumptions. On the other hand, the DNS cost often prevents conducting the sensitivity analysis of the simulation results to variations in the numerical procedure and thus, separating numerical and physical effects. In this paper, effects of the computational domain dimensions on statistics collected from DNS of a spatially developing incompressible turbulent mixing layer are analyzed with the focus on determining the domain dimensions suitable for studying the flow asymptotic state. In the simulations, the mixing layer develops between two coflowing laminar boundary layers formed on two sides of a sharp-ended splitter plate of a finite thickness with characteristics close to those of the untripped boundary layers in the experiments by Bell and Mehta, AIAA J., 28(12), 2034 (1990). The simulations were conducted using the spectral-element code Nek5000.
引用
收藏
页数:14
相关论文
共 50 条