Dexmedetomidine combined with propofol attenuates myocardial ischemia/reperfusion injury by activating the AMPK signaling pathway

被引:4
|
作者
Yang, Ke [1 ]
Ma, Yinhong [1 ]
Xie, Chunmei [1 ]
Zhao, Haoxing [1 ]
Dai, Zheng [1 ]
Wang, Xiaoqi [1 ]
机构
[1] Fuwai Yunnan Cardiovasc Hosp, Dept Anesthesiol, 528 Shahu North Rd, Kunming 650000, Yunnan, Peoples R China
关键词
Myocardial ischemia/reperfusion injury; Dexmedetomidine; Propofol; AMPK signaling pathway; Apoptosis; Autophagy; ISCHEMIA-REPERFUSION INJURY; PROTECTS;
D O I
10.1016/j.heliyon.2023.e22054
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: Myocardial ischemia/reperfusion (MI/R) injury is a major cause of cardiac tissue damage, with high disability and death rates. Although both dexmedetomidine (Dex) and propofol (PPF) have been indicated to alleviate MI/R injury in rat models, the effects of the combined use of these two drugs remain unclear. This study aimed to investigate the combined effects of Dex and PPF against MI/R injury and related mechanisms. Methods: A rat model of MI/R injury was established and used to explore the combined effects of Dex and PPF on MI/R injury. Hematoxylin-eosin (HE) and Masson staining were used for histopathological evaluation. 2,3,5-triphenyltetrazolium chloride (TTC), echocardiography, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining were used to determine myocardial infarction size, cardiac function, and apoptosis, respectively. Enzyme-linked immunosorbent assay (ELISA) was performed to assess myocardial function and oxidative stress (OS). Autophagy was observed through transmission electron microscopy. Moreover, western blotting was conducted to detect autophagy markers and the AMPK pathway. Results: The combination of Dex and PPF alleviated histopathological injury, reduced myocardial infarction, and rescued cardiac dysfunction in MI/R rats. Furthermore, Dex combined with PPF decreased the levels of MDA and ROS and increased the SOD level in MI/R rats. Besides, Dex combined with PPF inhibited myocardial apoptosis in MI/R rats. After combined treatment with Dex and PPF, the number of autophagosomes, expression levels of Beclin-1 and LC3II/LC3I were elevated, while the expression levels of p62 were reduced in MI/R rats. The combined use of Dex and PPF activated the AMPK pathway in MI/R rats. Compound C (an AMPK inhibitor) could abolish the combined effects of Dex and PPF on alleviating myocardial injury and enhancing autophagy in MI/R rats. Conclusion: The combination of Dex and PPF attenuated MI/R injury in rats, which may be associated with the activation of the AMPK signaling pathway.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] KAEMPFEROL ATTENUATES MYOCARDIAL ISCHEMIC INJURY VIA INHIBITION OF MAPK SIGNALING PATHWAY IN EXPERIMENTAL MODEL OF MYOCARDIAL ISCHEMIA-REPERFUSION INJURY
    Arya, Dharamveer Singh
    Suchal, Kapil
    Malik, Salma
    Bhargava, Poorva
    Bhatia, Jagriti
    JOURNAL OF HYPERTENSION, 2016, 34 : E136 - E137
  • [32] Effect of dexmedetomidine on myocardial ischemia-reperfusion injury
    Chen, Shoulin
    Hua, Fuzhou
    Lu, Jun
    Jiang, Yu
    Tang, Yanhua
    Tao, Lei
    Zou, Bing
    Wu, Qinghua
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (11): : 21166 - 21172
  • [33] Dexmedetomidine: A potential therapy for myocardial ischemia/reperfusion injury
    Wang, Hongkun
    Xia, Ying
    Sun, Zhiqiang
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 335 : 104 - 104
  • [34] The Application and Analytical Pathway of Dexmedetomidine in Ischemia/Reperfusion Injury
    Tang, Ying
    Jia, Changxin
    He, Jianshuai
    Zhao, Yang
    Chen, Huayong
    Wang, Shilei
    JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY, 2019, 2019
  • [35] NEAT1 promotes myocardial ischemia-reperfusion injury via activating the MAPK signaling pathway
    Du, Xian-Jin
    Wei, Jie
    Tian, Dan
    Yan, Chen
    Hu, Peng
    Wu, Xu
    Yang, Wenbin
    Hu, Xiaorong
    JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (10) : 18773 - 18780
  • [36] Agmatine Attenuates Liver Ischemia Reperfusion Injury by Activating Wnt/β-catenin Signaling in Mice
    Han, Zhenyi
    Li, Yakun
    Yang, Bo
    Tan, Rumeng
    Wang, Meixi
    Zhang, Bo
    Dai, Chen
    Wei, Lai
    Chen, Dong
    Chen, Zhishui
    TRANSPLANTATION, 2020, 104 (09) : 1906 - 1916
  • [37] Dexmedetomidine Attenuates Myocardial Injury Induced by Renal Ischemia/Reperfusion by Inhibiting the HMGB1-TLR4-MyD88-NF-κB Signaling Pathway
    Zhang, Bing
    Zhang, Jingjing
    Ainiwaer, Yiheshan
    He, Bichen
    Geng, Qiang
    Lin, Luowen
    Li, Xinling
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, 2021, 51 (03): : 376 - 384
  • [38] ACTIVATION OF KLOTHO/SIRT1 SIGNALING PATHWAY ATTENUATES MYOCARDIAL ISCHEMIA REPERFUSION INJURY IN DIABETIC RATS
    Qiu, Zhen
    Qi, Biao
    Li, Lu
    Cui, Jiahui
    Liu, Min
    Xia, Zhongyuan
    SHOCK, 2024, 62 (03): : 447 - 456
  • [39] Aloperine Alleviates Myocardial Injury Induced by Myocardial Ischemia and Reperfusion by Activating the ERK1/2/β-catenin Signaling Pathway
    Wei, Shichao
    Ju, Feng
    Xiao, Junshen
    Li, Jiaxue
    Liu, Ting
    Hu, Zhaoyang
    CARDIOVASCULAR DRUGS AND THERAPY, 2024,
  • [40] Recombinant Adiponectin Ameliorates Liver Ischemia Reperfusion Injury via Activating the AMPK/eNOS Pathway
    Zhang, Chuanzhao
    Liao, Yuan
    Li, Qiang
    Chen, Maogen
    Zhao, Qiang
    Deng, Ronghai
    Wu, Chenglin
    Yang, Anli
    Guo, Zhiyong
    Wang, Dongping
    He, Xiaoshun
    PLOS ONE, 2013, 8 (06):