Remaining Useful Life Prediction of Rolling Bearings Based on ECA-CAE and Autoformer

被引:2
|
作者
Zhong, Jianhua [1 ,2 ]
Li, Huying [1 ,2 ]
Chen, Yuquan [1 ]
Huang, Cong [1 ,2 ]
Zhong, Shuncong [1 ,2 ]
Geng, Haibin [1 ]
Zhou, Yongquan
机构
[1] Fuzhou Univ, Coll Mech Engn & Automat, Fuzhou 350108, Peoples R China
[2] Fuzhou Univ, Fujian Prov Key Lab Terahertz Funct Devices & Inte, Fuzhou 350108, Peoples R China
基金
美国国家科学基金会;
关键词
deep learning; rolling bearings; Autoformer; PROGNOSTICS; MACHINERY; DIAGNOSIS; STATE;
D O I
10.3390/biomimetics9010040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In response to the need for multiple complete bearing degradation datasets in traditional deep learning networks to predict the impact on individual bearings, a novel deep learning-based rolling bearing remaining life prediction method is proposed in the absence of fully degraded bearng data. This method involves processing the raw vibration data through Channel-wise Attention Encoder (CAE) from the Encoder-Channel Attention (ECA), extracting features related to mutual correlation and relevance, selecting the desired characteristics, and incorporating the selected features into the constructed Autoformer-based time prediction model to forecast the degradation trend of bearings' remaining time. The feature extraction method proposed in this approach outperforms CAE and multilayer perceptual-Attention Encoder in terms of feature extraction capabilities, resulting in reductions of 0.0059 and 0.0402 in mean square error, respectively. Additionally, the indirect prediction approach for the degradation trend of the target bearing demonstrates higher accuracy compared to Informer and Transformer models, with mean square error reductions of 0.3352 and 0.1174, respectively. This suggests that the combined deep learning model proposed in this paper for predicting rolling bearing life may be a more effective life prediction method deserving further research and application.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [21] A Nonlinear Degradation Model Based Method for Remaining Useful Life Prediction of Rolling Element Bearings
    Lei, Yaguo
    Li, Naipeng
    Jia, Feng
    Lin, Jing
    Xing, Saibo
    2015 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM), 2015,
  • [22] Remaining useful life prediction method for rolling bearings based on hybrid dilated convolution transfer
    Zhang, Bo
    Hu, Changhua
    Zhang, Hao
    Zheng, Jianfei
    Zhang, Jianxun
    Pei, Hong
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (06) : 3018 - 3036
  • [23] Remaining useful life prediction of rolling element bearings based on simulated performance degradation dictionary
    Cui, Lingli
    Wang, Xin
    Wang, Huaqing
    Jiang, Hong
    MECHANISM AND MACHINE THEORY, 2020, 153
  • [24] Remaining Useful Life prediction of rolling bearings based on risk assessment and degradation state coefficient
    Li, Qiang
    Yan, Changfeng
    Chen, Guangyi
    Wang, Huibin
    Li, Hongkun
    Wu, Lixiao
    ISA TRANSACTIONS, 2022, 129 : 413 - 428
  • [25] Remaining useful life prediction of rolling bearings based on time convolutional network and transformer in parallel
    Tang, Youfu
    Liu, Ruifeng
    Li, Chunhui
    Lei, Na
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [26] Remaining useful life prediction of rolling bearings based on Bayesian neural network and uncertainty quantification
    Jiang, Guang-Jun
    Yang, Jin-Sen
    Cheng, Tian-Cai
    Sun, Hong-Hua
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2023, 39 (05) : 1756 - 1774
  • [27] Remaining Useful Life Prediction Approach Based on Data Model Fusion: An Application in Rolling Bearings
    Zhu, Yonghuai
    Cheng, Jiangfeng
    Liu, Zhifeng
    Zou, Xiaofu
    Wang, Zhaozong
    Cheng, Qiang
    Xu, Hui
    Wang, Yong
    Tao, Fei
    IEEE Sensors Journal, 2024, 24 (24) : 42230 - 42244
  • [28] Research on remaining useful life prediction methods for rolling bearings based on a novel gated unit
    Ma, Ke
    Huang, Weiguo
    Ding, Chuancang
    Shi, Juanjuan
    Wang, Jun
    Shen, Changqing
    Jiang, Xingxing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [29] A model for remaining useful life prediction of rolling bearings based on the IBA-FELM algorithm
    Zhang, Jianyu
    Dai, Yang
    Xiao, Yong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [30] Remaining useful life prediction for rolling bearings based on adaptive aggregation of dynamic feature correlations
    Sun, Sichao
    Luo, Jie
    Huang, Ao
    Xia, Xinyu
    Yang, Jiale
    Zhou, Hua
    JOURNAL OF VIBRATION AND CONTROL, 2024,