Promoting the activity of Ni3S2-x/Ni2P fuzzy-like nanorods as a bifunctional electrocatalyst for efficient overall water splitting through dealloying and active site design strategy

被引:1
|
作者
Chen, Jianyue [1 ,2 ,3 ]
Ling, Yunhan [1 ]
Li, Shilin [1 ]
Wang, Guan [2 ]
Zhang, Zhengjun [1 ]
Wang, Guixin [2 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, Lab Adv Mat, Beijing 100084, Peoples R China
[2] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
[3] Inst New Funct Mat Co Ltd, Guangxi Inst Ind Technol, Nanning 530200, Peoples R China
基金
中国国家自然科学基金;
关键词
Water splitting; Electrocatalyst; Dealloying; DFT calculations; HYDROGEN EVOLUTION REACTION; RECENT PROGRESS; NANOTUBES; NI; TEMPLATE; CATALYST; FE;
D O I
10.1016/j.ijhydene.2023.11.127
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-efficiency bifunctional electrocatalysts can reduce the hydrogen and oxygen evolution reaction (HER/OER) overpotential, which is of great significance for hydrogen production by water splitting. However, issues remain with large-scale preparation and a bottleneck for design separation. In this work, we reported on a facile method using a nanostructured transition metal sulfide (TMS) Ni3S2-Vs-Ps nanorod (NSVP NR) bifunctional catalyst material, which was prepared by dealloying and doping to obtain novel fuzzy-like NRs with heterostructures in triphasic points. The experimental results and first-principles calculations both revealed that the P-dopants changed the coordination environment between the inner S-vacancy Ni3S2-x NRs and outer Ni2P nanoparticles in the heterojunctions of the triphasic points, which as active sites could accelerate the movement of electron charges in the metal catalyst. The NVSP NRs showed excellent adsorption energy results, which on the Ni site were Delta GH* at 0.12 eV for HER and Delta Gmax at 0.48 eV for OER. The optimized NSVP NRs demonstrated a current density of 100 mA/cm2 at the lowest overpotential of only 148 mV for HER and 311 mV for OER. Moreover, a cell voltage of 1.565 V could achieve 10 mA/cm2 when assembled in 1 M KOH solution for overall water splitting (OWS). Therefore, these findings provide a novel route from traditional dealloying corrosion for creating nanostructures and for producing new energy, offering insight into bifunctional catalyst design and application.
引用
收藏
页码:1429 / 1439
页数:11
相关论文
共 50 条
  • [31] Transition metal atom doped Ni3S2 as efficient bifunctional electrocatalysts for overall water splitting: Design strategy from DFT studies
    Chen, Yibo
    Zhang, Xinyu
    Qin, Jiaqian
    Liu, Riping
    MOLECULAR CATALYSIS, 2021, 516
  • [32] Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity
    Zeng, Lingyou
    Sun, Kaian
    Wang, Xiaobo
    Liu, Yunqi
    Pan, Yuan
    Liu, Zhi
    Cao, Dongwei
    Song, Yue
    Liu, Sihui
    Liu, Chenguang
    NANO ENERGY, 2018, 51 : 26 - 36
  • [33] NiCo2O4@Ni2P nanorods grown on nickel nanorod arrays as a bifunctional catalyst for efficient overall water splitting
    Wang, Q.
    Wang, H.
    Cheng, X.
    Fritz, M.
    Wang, D.
    Li, H.
    Bund, A.
    Chen, G.
    Schaaf, P.
    MATERIALS TODAY ENERGY, 2020, 17
  • [34] Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting
    Ren, Liming
    Wang, Chao
    Li, Wen
    Dong, Ruohao
    Sun, Hongxia
    Liu, Ning
    Geng, Baoyou
    ELECTROCHIMICA ACTA, 2019, 318 : 42 - 50
  • [35] Rationally designed Ni2P/WS2/Co9S8@C multi-interfacial electrocatalyst for efficient overall water splitting
    Pan, Fu-Chun
    He, Huan
    Yang, Zeng-Xi
    Zheng, Qiaoji
    Lin, Dunmin
    Huo, Yu
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [36] Flower-like CoNi2S4/Ni3S2 nanosheet clusters on nickel foam as bifunctional electrocatalyst for overall water splitting
    Dai, Weiji
    Ren, Kai
    Zhu, Yin-an
    Pan, Ye
    Yu, Jin
    Lu, Tao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 844
  • [37] W-doped FeNi2S4/Ni3S2/NF with interfacial effect as efficient bifunctional electrocatalyst for overall water splitting
    Jing Jiang
    Hui Su
    Shaojia Song
    Weilong Liu
    Ning Li
    Yangqin Gao
    Lei Ge
    Nano Research, 2023, 16 : 12116 - 12125
  • [38] W-doped FeNi2S4/Ni3S2/NF with interfacial effect as efficient bifunctional electrocatalyst for overall water splitting
    Jiang, Jing
    Su, Hui
    Song, Shaojia
    Liu, Weilong
    Li, Ning
    Gao, Yangqin
    Ge, Lei
    NANO RESEARCH, 2023, 16 (10) : 12116 - 12125
  • [39] Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting
    Zhang, Fang-Shuai
    Wang, Jia-Wei
    Luo, Jun
    Liu, Rui-Rui
    Zhang, Zhi-Ming
    He, Chun-Ting
    Lu, Tong-Bu
    CHEMICAL SCIENCE, 2018, 9 (05) : 1375 - 1384
  • [40] Iron doped Ni3S2 nanorods directly grown on FeNi3 foam as an efficient bifunctional catalyst for overall water splitting
    Zhang, Wenxiu
    Jia, Qiang
    Liang, Hui
    Cui, Liang
    Wei, Di
    Liu, Jingquan
    CHEMICAL ENGINEERING JOURNAL, 2020, 396