Hybrid learning model for analysing the Uppal earth region, in Telangana state, using multispectral Landsat-8 OLI images

被引:0
|
作者
Sri, P. Aruna [1 ]
Santhi, V. [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
关键词
Landsat-8; OLI; remote sensing; normalised vegetation index; accuracy; BUILT-UP; CLASSIFICATION; EXTRACTION; LAND;
D O I
10.1504/IJCAT.2023.131589
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Remote Sensing (RS) and Geographical Information Systems (GIS) are being widely used to carry out analysis of the Earth's surface. In this paper, a hybrid learning model is proposed for the classification and analysis of the Uppal earth region, located nearby Hyderabad in Telangana state. In the hybrid learning model, the ISODATA clustering algorithm is combined with the Normalised Vegetation Index (NDVI) and K-means learning model. In this proposal, the spectral features of the Uppal region are extracted from the satellite images and used for further analysis. The obtained accuracy of the proposed Merged-ISODATA algorithm is 74.33% and the Kappa value is 0.64. The obtained accuracy and Kappa value for existing ISODATA clustering and K-Means algorithm are 71.5% and 0.58. These values imply that the obtained results of the proposed algorithm are better than the results obtained in existing approaches.
引用
收藏
页码:167 / 180
页数:15
相关论文
共 50 条
  • [21] Subpixel Inundation Mapping Using Landsat-8 OLI and UAV Data for a Wetland Region on the Zoige Plateau, China
    Xia, Haoming
    Zhao, Wei
    Li, Ainong
    Bian, Jinhu
    Zhang, Zhengjian
    [J]. REMOTE SENSING, 2017, 9 (01):
  • [22] GIS-based machine learning algorithms for mapping beach placer deposits in the southwest coast of India using Landsat-8 OLI images
    Rejith, Rajan Girija
    Sundararajan, Mayappan
    Gnanappazham, Lakshmanan
    Seenipandi, Kaliraj
    Ramaswamy, Sreekantaiyer
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)
  • [23] Comparing Land-cover Maps Accuracies Generated from Multispectral Classification of Landsat-8 OLI dan Pleiades Images using Two Different Classification Schemes
    Putri, Erisa A. W.
    Danoedoro, Projo
    Farda, Nur M.
    [J]. SIXTH GEOINFORMATION SCIENCE SYMPOSIUM, 2019, 11311
  • [24] Automated Cloud Detection Algorithm for Multi-spectral High Spatial Resolution Images Using Landsat-8 OLI
    Yang, Yu
    Zheng, Hong
    Chen, Hao
    [J]. ADVANCES IN IMAGE AND GRAPHICS TECHNOLOGIES (IGTA 2015), 2015, 525 : 396 - 407
  • [25] Image-based tea yield estimation using Landsat-8 OLI and Sentinel-2B images
    Ramadanningrum, Dyah Puteri
    Kamal, Muhammad
    Murti, Sigit Heru
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2020, 20
  • [26] Mapping water salinity using Landsat-8 OLI satellite images (Case study: Karun basin located in Iran)
    Ansari, Mohsen
    Akhoondzadeh, Mehdi
    [J]. ADVANCES IN SPACE RESEARCH, 2020, 65 (05) : 1490 - 1502
  • [27] Monitoring the Change in Water Class of Two Rivers in Sangam Region, Prayagraj, India using Landsat-8 OLI Imagery
    Mishra, Vikash K.
    Pant, T.
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5921 - 5924
  • [28] Modeling the spatio-temporal dissolved organic carbon concentration in Barra Bonita reservoir using OLI/Landsat-8 images
    Alcântara E.
    Bernardo N.
    Rodrigues T.
    Watanabe F.
    [J]. Modeling Earth Systems and Environment, 2017, 3 (1)
  • [29] Estimation of Trophic State Index of Chilika Lake using Landsat-8 OLI and LISS-III satellite data
    Kumar Jally, Sujit
    Kumar Mishra, Akhila
    Balabantaray, Sachikanta
    [J]. GEOCARTO INTERNATIONAL, 2020, 35 (07) : 759 - 780
  • [30] Monitoring gas flaring in Texas using time-series sentinel-2 MSI and landsat-8 OLI images
    Wu, Wei
    Liu, Yongxue
    Rogers, Brendan M.
    Xu, Wenxuan
    Dong, Yanzhu
    Lu, Wanyu
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 114