Hybrid learning model for analysing the Uppal earth region, in Telangana state, using multispectral Landsat-8 OLI images

被引:0
|
作者
Sri, P. Aruna [1 ]
Santhi, V. [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
关键词
Landsat-8; OLI; remote sensing; normalised vegetation index; accuracy; BUILT-UP; CLASSIFICATION; EXTRACTION; LAND;
D O I
10.1504/IJCAT.2023.131589
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Remote Sensing (RS) and Geographical Information Systems (GIS) are being widely used to carry out analysis of the Earth's surface. In this paper, a hybrid learning model is proposed for the classification and analysis of the Uppal earth region, located nearby Hyderabad in Telangana state. In the hybrid learning model, the ISODATA clustering algorithm is combined with the Normalised Vegetation Index (NDVI) and K-means learning model. In this proposal, the spectral features of the Uppal region are extracted from the satellite images and used for further analysis. The obtained accuracy of the proposed Merged-ISODATA algorithm is 74.33% and the Kappa value is 0.64. The obtained accuracy and Kappa value for existing ISODATA clustering and K-Means algorithm are 71.5% and 0.58. These values imply that the obtained results of the proposed algorithm are better than the results obtained in existing approaches.
引用
收藏
页码:167 / 180
页数:15
相关论文
共 50 条
  • [1] Assessment of Forest Damage in Croatia using Landsat-8 OLI Images
    Milas, Anita Simic
    Rupasinghe, Prabha
    Balenovic, Ivan
    Grosevski, Pece
    [J]. SEEFOR-SOUTH-EAST EUROPEAN FORESTRY, 2015, 6 (02): : 159 - 169
  • [2] A new image mosaic of Greenland using Landsat-8 OLI images
    Chen, Zhuoqi
    Chi, Zhaohui
    Zinglersen, Karl B.
    Tian, Ying
    Wang, Kaijia
    Hui, Fengming
    Cheng, Xiao
    [J]. SCIENCE BULLETIN, 2020, 65 (07) : 522 - 524
  • [3] Landsat-8 OLI Multispectral Image Dehazing Based on Optimized Atmospheric Scattering Model
    Guo, Jianhua
    Yang, Jingyu
    Yue, Huanjing
    Hou, Chunping
    Li, Kun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10255 - 10265
  • [4] The reptile optimized deep learning model for land cover classification of the uppal earth region in telangana state using satellite image fusion
    Sri, P. Aruna
    Santhi, V.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (02) : 3209 - 3229
  • [5] A Hybrid Level Set Based Approach for Surface Water Delineation using Landsat-8 Multispectral Images
    Bijeesh, T., V
    Narasimhamurthy, K. N.
    [J]. ENGINEERING LETTERS, 2021, 29 (02) : 624 - 633
  • [6] Assessment of Different Bathymetry Statistical Models Using Landsat-8 Multispectral Images
    Makboul, Omar
    Negm, Abdelazim
    Mesbah, Saleh
    Mohasseb, Mohamed
    [J]. HYDROLOGIC MODELING, 2018, 81 : 277 - 290
  • [7] Pixel based classification for Landsat 8 OLI multispectral satellite images using deep learning neural network
    Singh, Mohan
    Tyagi, Kapil Dev
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 24
  • [8] Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images
    Yoshino Watanabe, Fernanda Sayuri
    Alcantara, Enner
    Pequeno Rodrigues, Thanan Walesza
    Imai, Nilton Nobuhiro
    Faria Barbosa, Claudio Clemente
    da Silva Rotta, Luiz Henrique
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2015, 12 (09): : 10391 - 10417
  • [9] Estimating the CDOM absorption coefficient in tropical inland waters using OLI/Landsat-8 images
    Alcantara, Enner
    Bernardo, Nariane
    Watanabe, Fernanda
    Rodrigues, Thanan
    Rotta, Luiz
    Carmo, Alisson
    Shimabukuro, Milton
    Goncalves, Stela
    Imai, Nilton
    [J]. REMOTE SENSING LETTERS, 2016, 7 (07) : 661 - 670
  • [10] Remote Estimation of Trophic State Index for Inland Waters Using Landsat-8 OLI Imagery
    Hu, Minqi
    Ma, Ronghua
    Cao, Zhigang
    Xiong, Junfeng
    Xue, Kun
    [J]. REMOTE SENSING, 2021, 13 (10)