4D scanning transmission electron microscopy (4D-STEM) reveals crystallization mechanisms of organic semiconductors on graphene

被引:2
|
作者
Guo, Zixuan [1 ]
Ophus, Colin [2 ]
Bustillo, Karen C. [2 ]
Fair, Ryan [3 ]
Mannsfeld, Stefan C. B. [4 ]
Briseno, Alejandro L. [5 ]
Gomez, Enrique D. [3 ,6 ]
机构
[1] Penn State Univ, Dept Chem, State Coll, PA 16802 USA
[2] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA
[3] Penn State Univ, Dept Mat Sci & Engn, Univ Pk, State Coll, PA 16802 USA
[4] Univ Technol Dresden, Ctr Adv Elect Dresden, Dept Elect & Comp Engn, D-01069 Dresden, Germany
[5] Naval Air Warfare Ctr, Dept Chem, Weap Div, China Lake, CA 93555 USA
[6] Penn State Univ, Dept Chem Engn, Univ Pk, State Coll, PA 16802 USA
关键词
Crystallization; Semiconducting; Morphology; Scanning transmission electron microscopy (STEM); GROWTH; SURFACE; PTCDA;
D O I
10.1557/s43579-022-00310-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Organic semiconductor materials exhibit properties that enable use in various electrical devices, such as organic solar cells and field-effect transistors. It is challenging, however, to control molecular packing at organic-organic interfaces and also characterize the morphology at buried interlayers. Here, we demonstrate via vertical physical vapor transport the ability to grow single-crystalline bilayer organic semiconductors on graphene using two small molecules: zinc phthalocyanine (ZnPc), and 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA). We employ 4D-scanning transmission electron diffraction (4D-STEM) to directly observe the orientation distribution of ZnPc and PTCDA crystallites on graphene, explaining the different growth mechanisms of organic molecules on graphene substrates, and we predict the morphology of the stacked ZnPc/PTCDA heterojunctions.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 50 条
  • [21] Denoising atomic resolution 4D scanning transmission electron microscopy data with tensor singular value decomposition
    Zhang, Chenyu
    Han, Rungang
    Zhang, Anru R.
    Voyles, Paul M.
    ULTRAMICROSCOPY, 2020, 219
  • [22] 4D-STEM Ptychography for Electron-Beam-Sensitive Materials
    Li, Guanxing
    Zhang, Hui
    Han, Yu
    ACS CENTRAL SCIENCE, 2022, 8 (12) : 1579 - 1588
  • [23] Lattice Strain Measurement of Core@Shell Electrocatalysts with 4D Scanning Transmission Electron Microscopy Nanobeam Electron Diffraction
    Mukherjee, Debangshu
    Gamler, Jocelyn T. L.
    Skrabalak, Sara E.
    Unocic, Raymond R.
    ACS CATALYSIS, 2020, 10 (10): : 5529 - 5541
  • [24] 4D Cryo-Electron Microscopy of Proteins
    Fitzpatrick, Anthony W. P.
    Lorenz, Ulrich J.
    Vanacore, Giovanni M.
    Zewail, Ahmed H.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) : 19123 - 19126
  • [25] 4D electron microscopy of T cell activation
    Lu, Yue
    Yoo, Byung-Kuk
    Ng, Alphonsus H. C.
    Kim, Jungwoo
    Yeom, Sinchul
    Tang, Jau
    Lin, Milo M.
    Zewail, Ahmed H.
    Heath, James R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (44) : 22014 - 22019
  • [26] 4D ultrafast electron diffraction, crystallography, and microscopy
    Zewail, Ahmed H.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2006, 57 : 65 - 103
  • [27] Photonics and Plasmonics in 4D Ultrafast Electron Microscopy
    Barwick, Brett
    Zewail, Ahmed H.
    ACS PHOTONICS, 2015, 2 (10): : 1391 - 1402
  • [28] 4D electron microscopy with a millisecond temporal resolution
    Watanabe, Shigeki
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : A87 - A87
  • [29] Biological imaging with 4D ultrafast electron microscopy
    Flannigan, David J.
    Barwick, Brett
    Zewail, Ahmed H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (22) : 9933 - 9937
  • [30] Attosecond electron pulses for 4D diffraction and microscopy
    Baum, Peter
    Zewail, Ahmed H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) : 18409 - 18414