Attention Mechanism-Aided Deep Reinforcement Learning for Dynamic Edge Caching

被引:3
|
作者
Teng, Ziyi [1 ]
Fang, Juan [1 ]
Yang, Huijing [1 ]
Yu, Lu [2 ]
Chen, Huijie [1 ]
Xiang, Wei [3 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] James Cook Univ, Dept Elect & Comp Engn, Cairns, Qld 4878, Australia
[3] La Trobe Univ, Sch Comp Engn & Math Sci, Melbourne, Vic 3086, Australia
基金
中国国家自然科学基金;
关键词
Servers; Wireless communication; Optimization; Load modeling; Resource management; Internet of Things; Telecommunication traffic; Attention-weighted channel assignment; deep reinforcement learning; edge caching; wireless network; USER ASSOCIATION; PLACEMENT;
D O I
10.1109/JIOT.2023.3327656
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dynamic mechanism of joint proactive caching and cache replacement, which involves placing content items close to cache-enabled edge devices ahead of time until they are requested, is a promising technique for enhancing traffic offloading and relieving heavy network loads. However, due to limited edge cache capacity and wireless transmission resources, accurately predicting users' future requests and performing dynamic caching is crucial to effectively utilizing these limited resources. This article investigates joint proactive caching and cache replacement strategies in a general mobile-edge computing (MEC) network with multiple users under a cloud-edge-device collaboration architecture. The joint optimization problem is formulated as a Markov decision process (MDP) problem with an infinite range of average network load costs, aiming to reduce network load traffic while efficiently utilizing the limited available transport resources. To address this issue, we design an attention-weighted deep deterministic policy gradient (AWD2PG) model, which uses attention weights to allocate the number of channels from server to user, and applies deep deterministic policies on both user and server sides for Cache decision-making, so as to achieve the purpose of reducing network traffic load and improving network and cache resource utilization. We verify the convergence of the corresponding algorithms and demonstrate the effectiveness of the proposed AWD2PG strategy and benchmark in reducing network load and improving hit rate.
引用
收藏
页码:10197 / 10213
页数:17
相关论文
共 50 条
  • [41] CoPace: Edge Computation Offloading and Caching for Self-Driving With Deep Reinforcement Learning
    Tian, Hao
    Xu, Xiaolong
    Qi, Lianyong
    Zhang, Xuyun
    Dou, Wanchun
    Yu, Shui
    Ni, Qiang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (12) : 13281 - 13293
  • [42] Collaborative Edge Caching and Transcoding for 360° Video Streaming Based on Deep Reinforcement Learning
    Yang, Taoyu
    Tan, Zengjie
    Xu, Yuanyuan
    Cai, Shuwen
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (24) : 25551 - 25564
  • [43] Deep Reinforcement Learning and Permissioned Blockchain for Content Caching in Vehicular Edge Computing and Networks
    Dai, Yueyue
    Xu, Du
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (04) : 4312 - 4324
  • [44] Mobility-Aware Edge Caching and Computing in Vehicle Networks: A Deep Reinforcement Learning
    Le Thanh Tan
    Hu, Rose Qingyang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (11) : 10190 - 10203
  • [45] Attention-Based Deep Reinforcement Learning for Edge User Allocation
    Chang, Jiaxin
    Wang, Jian
    Li, Bing
    Zhao, Yuqi
    Li, Duantengchuan
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (01): : 590 - 604
  • [46] Deep Reinforcement Learning Based Collaborative Mobile Edge Caching for Omnidirectional Video Streaming
    Tan, Zengjie
    Xu, Yuanyuan
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT I, 2021, 12937 : 453 - 464
  • [47] QoE-Driven Edge Caching in Vehicle Networks Based on Deep Reinforcement Learning
    Song, Chunhe
    Xu, Wenxiang
    Wu, Tingting
    Yu, Shimao
    Zeng, Peng
    Zhang, Ning
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (06) : 5286 - 5295
  • [48] Permissioned Blockchain and Deep Reinforcement Learning for Content Caching in Vehicular Edge Computing and Networks
    Dai, Yueyue
    Xu, Du
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [49] Deep Reinforcement Learning for Mobile Edge Caching: Review, New Features, and Open Issues
    Zhu, Hao
    Cao, Yang
    Wang, Wei
    Jiang, Tao
    Jin, Shi
    IEEE NETWORK, 2018, 32 (06): : 50 - 57
  • [50] Cooperative Edge Caching via Federated Deep Reinforcement Learning in Fog-RANs
    Zhang, Min
    Jiang, Yanxiang
    Zheng, Fu-Chun
    Bennis, Mehdi
    You, Xiaohu
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,