Isometry groups of inductive limits of metric spectral triples and Gromov-Hausdorff convergence

被引:2
|
作者
Bassi, Jacopo [1 ]
Conti, Roberto [2 ]
Farsi, Carla [3 ]
Latremoliere, Frederic [4 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Rome, Italy
[2] Sapienza Univ Roma, Dipartimento SBAI, Rome, Italy
[3] Univ Colorado, Dept Math, Boulder, CO USA
[4] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
C-ASTERISK-ALGEBRAS; FREDHOLM MODULES; DIRAC OPERATORS;
D O I
10.1112/jlms.12787
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the groups of isometries and the set of bi-Lipschitz automorphisms of spectral triples from a metric viewpoint, in the propinquity framework of Latremoliere. In particular, we prove that these groups and sets are compact in the automorphism group of the spectral triple C*-algebra with respect to the Monge-Kantorovich metric, which induces the topology of pointwise convergence. We then prove a necessary and sufficient condition for the convergence of the actions of various groups of isometries, in the sense of the covariant version of the Gromov-Hausdorff propinquity, a noncommutative analogue of the Gromov-Hausdorff distance, when working in the context of inductive limits of quantum compact metric spaces and metric spectral triples. We illustrate our work with examples including AF algebras and noncommutative solenoids.
引用
收藏
页码:1488 / 1530
页数:43
相关论文
共 50 条
  • [1] The Gromov-Hausdorff propinquity for metric spectral triples
    Latremoliere, Frederic
    [J]. ADVANCES IN MATHEMATICS, 2022, 404
  • [2] Gromov-Hausdorff convergence of metric spaces
    Peter, Petersen V
    [J]. Proceedings of Symposia in Pure Mathematics, 1993, 54 (01):
  • [3] Gromov-hausdorff convergence of metric spaces
    Petersen, Peter
    [J]. Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [4] Gromov-Hausdorff convergence of metric pairs and metric tuples
    Ahumada Gomez, Andres
    Che, Mauricio
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 94
  • [5] ON GROMOV-HAUSDORFF CONVERGENCE FOR OPERATOR METRIC SPACES
    Kerr, David
    Li, Hanfeng
    [J]. JOURNAL OF OPERATOR THEORY, 2009, 62 (01) : 83 - 109
  • [6] Lorentzian metric spaces and their Gromov-Hausdorff convergence
    Minguzzi, E.
    Suhr, S.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [7] Limits of Manifolds in the Gromov-Hausdorff Metric Space
    Hegenbarth, Friedrich
    Repovs, Dusan D.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [8] Gromov-Hausdorff convergence of spectral truncations for tori
    Leimbach, Malte
    van Suijlekom, Walter D.
    [J]. ADVANCES IN MATHEMATICS, 2024, 439
  • [9] ISOMETRY GROUP OF GROMOV-HAUSDORFF SPACE
    Ivanov, Alexander O.
    Tuzhilin, Alexey A.
    [J]. MATEMATICKI VESNIK, 2019, 71 (1-2): : 123 - 154
  • [10] Gromov-Hausdorff convergence of state spaces for spectral truncations
    van Suijlekom, Walter D.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2021, 162