Minimal Action on the Space of Measures and Hamilton-Jacobi Equations

被引:0
|
作者
Siconolfi, Antonio [1 ]
机构
[1] Univ Roma La Sapienza, Dept Math, Rome, Italy
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2023年 / 8卷 / 01期
关键词
Wasserstein distances; Hamilton-Jacobi equations; Kantorovich duality theorem; prob-ability measures;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the minimal action induced by a convex Lagrangian on the torus in the space of prob-ability measures, in connection with the viscosity solutions of a pair of corresponding conjugate time-dependent Hamilton Jacobi equations. To this scope, we prove a version of Kantorovich dual-ity theorem in the aforementioned framework through an argument that, as far as we can judge, is simple and new. It is based on the construction of approximate linear optimization problems posed in a space of matrices and a passage at the limit exploiting the density property of the convex hull of Dirac measures in the space of the probability measures on the torus with the narrow topology. In the proof it is solely used the finite dimensional version of Hahn-Banach theorem.
引用
收藏
页码:213 / 234
页数:22
相关论文
共 50 条
  • [1] HAMILTON-JACOBI EQUATIONS IN THE WASSERSTEIN SPACE
    Gangbo, Wilfrid
    Truyen Nguyen
    Tudorascu, Adrian
    METHODS AND APPLICATIONS OF ANALYSIS, 2008, 15 (02) : 155 - 183
  • [2] Hamilton-Jacobi equations in space of measures associated with a system of conservation laws
    Feng, Jin
    Truyen Nguyen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (04): : 318 - 390
  • [3] A Hamilton-Jacobi PDE in the space of measures and its associated compressible Euler equations
    Feng, Jin
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (17-18) : 973 - 976
  • [4] Excess action and broken characteristics for Hamilton-Jacobi equations
    Strömberg, Thomas
    Ahmadzadeh, Farzaneh
    Nonlinear Analysis, Theory, Methods and Applications, 2014, 110 : 113 - 129
  • [5] Excess action and broken characteristics for Hamilton-Jacobi equations
    Stromberg, Thomas
    Ahmadzadeh, Farzaneh
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 110 : 113 - 129
  • [6] Conservation laws and Hamilton-Jacobi equations with space inhomogeneity
    Colombo, Rinaldo M.
    Perrollaz, Vincent
    Sylla, Abraham
    JOURNAL OF EVOLUTION EQUATIONS, 2023, 23 (03)
  • [7] COMPACTNESS ESTIMATES FOR HAMILTON-JACOBI EQUATIONS DEPENDING ON SPACE
    Ancona, Fabio
    Cannarsa, Piermarco
    Nguyen, Khai T.
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2016, 11 (01): : 63 - 113
  • [8] Systems of Hamilton-Jacobi equations
    Cambronero, Julio
    Perez Alvarez, Javier
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) : 650 - 658
  • [9] Relaxation of Hamilton-Jacobi equations
    Ishii, H
    Loreti, P
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (04) : 265 - 304
  • [10] Externality and Hamilton-Jacobi equations
    Paola Loreti
    Giorgio Vergara Caffarelli
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 123 - 136