Fault diagnosis method of photovoltaic array based on support vector machine

被引:26
|
作者
Wang, Junjie [1 ]
Gao, Dedong [1 ]
Zhu, Shaokang [1 ]
Wang, Shan [1 ]
Liu, Haixiong [1 ]
机构
[1] Qinghai Univ, Sch Mech Engn, Xining 810016, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
PV arrays; SVM-based fault diagnosis algorithm; data preprocessing; grid search; k-fold cross-validation; SYSTEMS; VOLTAGE; CHALLENGES; MODULES; SCHEME;
D O I
10.1080/15567036.2019.1671557
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Photovoltaic (PV) arrays are prone to various faults due to the hostile working environment. This paper presents the fault diagnosis algorithm based on support vector machine (SVM) to detect short circuit, open circuit, and lack of irradiation faults that occurred in PV arrays. By analyzing these faults and I-V characteristic curves of PV arrays, the short-circuit current, open-circuit voltage, maximum-power current, and maximum-power voltage are chosen as input parameters of SVM-based fault diagnosis algorithm. The data preprocessing methods are used to improve the quality of fault data set considering the effects of the quality on the performance of SVM-based fault diagnosis algorithm. The grid search and k-fold cross-validation methods are proposed to optimize the parameters of the SVM-based fault diagnosis algorithm. It gets test accuracy of 97% by testing the trained SVM-based fault diagnosis algorithm with 400 data. The experimental results indicate that the SVM-based fault diagnosis algorithm has higher accuracy and generalization ability than other algorithm for fault diagnosis of PV arrays.
引用
收藏
页码:5380 / 5395
页数:16
相关论文
共 50 条
  • [31] Fault diagnosis of WWTP based on improved support vector machine
    Zeng, G. M.
    Li, X. D.
    Jiang, R.
    Li, J. B.
    Huang, G. H.
    ENVIRONMENTAL ENGINEERING SCIENCE, 2006, 23 (06) : 1044 - 1054
  • [32] An Improved Fault Diagnosis Approach Based on Support Vector Machine
    Zhao, Qi
    Wang, Bingqian
    Zhou, Gan
    Zhang, Wenfeng
    Guan, Xiumei
    Feng, Wenquan
    2016 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2016,
  • [33] Fault Diagnosis of Automobile Engine Based on Support Vector Machine
    Wang Dejun
    Li Meng
    Liu Chao
    Sun Jia'nan
    INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS SCIENCE, PTS 1 AND 2, 2011, 80-81 : 1060 - 1064
  • [34] UUV Fault Diagnosis Model Based on Support Vector Machine
    Wu, Lihua
    Liu, Yu
    Shi, Zhenhua
    Ai, Zhenyi
    Wu, Man
    Chen, Yuanbao
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 2, BIC-TA 2023, 2024, 2062 : 322 - 330
  • [35] Fault Diagnosis of Bearing Based on Fuzzy Support Vector Machine
    Ma, Haodong
    Xiong, Yi
    Fang, Hongzheng
    Gu, Lichao
    2015 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM), 2015,
  • [36] Support Vector Machine Based on Possibility Degrees and Fault Diagnosis
    Du Jingyi
    Wang Mei
    Cai Wenhao
    FIFTH INTERNATIONAL CONFERENCE ON INFORMATION ASSURANCE AND SECURITY, VOL 1, PROCEEDINGS, 2009, : 285 - 288
  • [37] Study on the fault diagnosis of turbine based on support vector machine
    Liu BaoLing
    RECENT TRENDS IN MATERIALS AND MECHANICAL ENGINEERING MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3, 2011, 55-57 : 1803 - 1806
  • [38] Fault Diagnosis for Valves of Compressors Based on Support Vector Machine
    Chen, Zhigang
    Lian, Xiangjiao
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 1235 - 1238
  • [39] Research status of fault diagnosis based on support vector machine
    Liu Limei
    Wang Jianwen
    Guo Ying
    Lin Hongsheng
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 787 - 791
  • [40] Fault diagnosis for a mobile robot based on support vector machine
    Zhejiang University, Hangzhou 310027, China
    Diangong Jishu Xuebao, 2008, 11 (173-177+182):