Modeling the effects of salt concentration on aqueous and organic electrolytes

被引:2
|
作者
van der Lubbe, Stephanie C. C. [1 ]
Canepa, Pieremanuele [1 ,2 ,3 ,4 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[4] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
基金
新加坡国家研究基金会;
关键词
DEPENDENT STATIC PERMITTIVITY; ACTIVITY-COEFFICIENTS; LITHIUM-SALTS; ASSOCIATION; SOLVENTS; WATER;
D O I
10.1038/s41524-023-01126-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the thermodynamic properties of electrolyte solutions is of vital importance for a myriad of physiological and technological applications. The mean activity coefficient & gamma;& PLUSMN; is associated with the deviation of an electrolyte solution from its ideal behavior and may be obtained by combining the Debye-Huckel (DH) and Born (B) equations. However, the DH and B equations depend on the concentration and temperature-dependent static permittivity of the solution & epsilon;r(c, T) and the size of the solvated ions ri, whose experimental data is often not available. Here, we use a combination of molecular dynamics and density functional theory to predict & epsilon;r(c, T) and ri, which enables us to apply the DH and B equations to any technologically relevant aqueous and nonaqueous electrolyte at any concentration and temperature of interest.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Salt effects on single aqueous drops falling through an immiscible organic liquid
    Chen, CT
    Maa, JR
    Yang, YM
    Chang, CH
    CHEMICAL ENGINEERING COMMUNICATIONS, 2002, 189 (10) : 1297 - 1313
  • [32] A comparative study on the effects of salt and filler on transport and structural properties of organic–inorganic hybrid electrolytes
    Tarng-Shiang Hu
    Peng-Kai Hong
    Diganta Saikia
    Hsien-Ming Kao
    Ming-Chou Chen
    Ionics, 2014, 20 : 1561 - 1571
  • [33] Effects of lithium salt concentration on graphited carbon microbead anodes in the piperidinium-based hybrid electrolytes
    Gao, Kun
    Li, Shu-Dan
    MATERIALS RESEARCH BULLETIN, 2015, 61 : 159 - 164
  • [34] ELECTRODEPOSITION OF LITHIUM IN NON-AQUEOUS ORGANIC ELECTROLYTES
    GARREAU, M
    THEVENIN, J
    FEKIR, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (08) : C321 - C321
  • [35] CONDUCTIVITY OF STRONG ELECTROLYTES IN AQUEOUS ORGANIC-SOLVENTS
    BAMANE, BD
    DATAR, DS
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 1979, 56 (01) : 41 - 47
  • [36] Extractive concentration of aqueous salt solutions in aqueous two phase systems
    Milosevic, Miran
    Staal, Koen J. J.
    Schuur, Boelo
    de Haan, Andre B.
    DESALINATION, 2013, 324 : 99 - 110
  • [37] SALT EFFECTS ON ADSORBED NON-ELECTROLYTES
    AVEYARD, R
    SALEEM, SM
    CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1977, 55 (23): : 4018 - 4027
  • [38] CONCENTRATION VARIATION OF APPARENT HEAT CAPACITIES OF ELECTROLYTES IN AQUEOUS SOLUTIONS
    SERGEEVA, RI
    DRAKIN, SI
    KARAPETY.MK
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY,USSR, 1970, 44 (11): : 1665 - &
  • [39] STUDY OF THE CONCENTRATION-DEPENDENCE OF THE CONDUCTANCE OF AQUEOUS-ELECTROLYTES
    MAHIUDDIN, S
    ISMAIL, K
    JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (05): : 1027 - 1031
  • [40] Equation of concentration dependence of activity coefficients of electrolytes in aqueous solutions
    Allakhverdov, GR
    ZHURNAL FIZICHESKOI KHIMII, 1996, 70 (10): : 1828 - 1833