On the SCD semismooth* Newton method for generalized equations with application to a class of static contact problems with Coulomb friction

被引:2
|
作者
Gfrerer, Helmut [1 ]
Mandlmayr, Michael [1 ]
Outrata, Jiri, V [2 ,3 ]
Valdman, Jan [2 ,4 ]
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Czech Acad Sci, Inst Informat Theory & Automat, Prague 18208, Czech Republic
[3] Federat Univ Australia, Ctr Informat & Appl Optimizat, POB 663, Ballarat, Vic 3350, Australia
[4] Czech Tech Univ, Fac Informat Technol, Dept Appl Math, Thakurova 9, Prague 16000, Czech Republic
基金
奥地利科学基金会;
关键词
Newton method; semismoothness*; Subspace containing derivative; Generalized equation; Signorini problem with Coulomb friction; SHAPE OPTIMIZATION; CRITERION;
D O I
10.1007/s10589-022-00429-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the paper, a variant of the semismooth* Newton method is developed for the numerical solution of generalized equations, in which the multi-valued part is a so-called SCD (subspace containing derivative) mapping. Under a rather mild regularity requirement, the method exhibits (locally) superlinear convergence behavior. From the main conceptual algorithm, two implementable variants are derived whose efficiency is tested via a generalized equation modeling a discretized static contact problem with Coulomb friction.
引用
收藏
页码:1159 / 1191
页数:33
相关论文
共 50 条
  • [1] On the SCD semismooth* Newton method for generalized equations with application to a class of static contact problems with Coulomb friction
    Helmut Gfrerer
    Michael Mandlmayr
    Jiří V. Outrata
    Jan Valdman
    [J]. Computational Optimization and Applications, 2023, 86 : 1159 - 1191
  • [2] On the Solution of Contact Problems with Tresca Friction by the Semismooth* Newton Method
    Gfrerer, Helmut
    Outrata, Jiri V.
    Valdman, Jan
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 515 - 523
  • [3] A GENERALIZED NEWTON METHOD FOR CONTACT PROBLEMS WITH FRICTION
    CURNIER, A
    ALART, P
    [J]. JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1988, 7 : 67 - 82
  • [4] ON A SEMISMOOTH* NEWTON METHOD FOR SOLVING GENERALIZED EQUATIONS
    Gfrerer, Helmut
    Outrata, Jiri, V
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 489 - 517
  • [5] The Josephy–Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization
    Alexey F. Izmailov
    Alexey S. Kurennoy
    Mikhail V. Solodov
    [J]. Set-Valued and Variational Analysis, 2013, 21 : 17 - 45
  • [6] Generalized Newton-iterative method for semismooth equations
    Sun, Zhe
    Zeng, Jinping
    Xu, Hongru
    [J]. NUMERICAL ALGORITHMS, 2011, 58 (03) : 333 - 349
  • [7] SOLUTION OF LARGE DISPLACEMENT CONTACT PROBLEMS WITH FRICTION USING NEWTON METHOD FOR GENERALIZED EQUATIONS
    KLARBRING, A
    BJORKMAN, G
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 34 (01) : 249 - 269
  • [8] Generalized Newton-iterative method for semismooth equations
    Zhe Sun
    Jinping Zeng
    Hongru Xu
    [J]. Numerical Algorithms, 2011, 58
  • [9] A MULTIGRID SEMISMOOTH NEWTON METHOD FOR SEMILINEAR CONTACT PROBLEMS
    Ulbrich, Michael
    Ulbrich, Stefan
    Bratzke, Daniela
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2017, 35 (04) : 486 - 528
  • [10] The Josephy-Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization
    Izmailov, Alexey F.
    Kurennoy, Alexey S.
    Solodov, Mikhail V.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (01) : 17 - 45