Leavitt Path Algebras in Which Every Lie Ideal is an Ideal and Applications

被引:0
|
作者
Khanh, Huynh Viet [1 ]
机构
[1] HCMC Univ Educ, Dept Math & Informat, 280 Duong Vuong Str,Dist 5, Ho Chi Minh City, Vietnam
关键词
Leavitt path algebra; Lie algebra; Locally solvable radical; Semisimple Lie algebra; SIMPLICITY;
D O I
10.1007/s00031-024-09848-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we classify all Leavitt path algebras which have the property that every Lie ideal is an ideal. As an application, we show that Leavitt path algebras with this property provide a class of locally finite, infinite-dimensional Lie algebras whose locally solvable radical is completely determined. This particularly gives us a new class of semisimple Lie algebras over a field of prime characteristic.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] RIESZ SPACES FOR WHICH EVERY IDEAL IS A PROJECTION BAND
    HUIJSMANS, CB
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1976, 79 (01): : 30 - 35
  • [42] Commutative rings in which every pure ideal is projective
    Mahdou N.
    El Khalfaoui R.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2019, 65 (2) : 301 - 310
  • [43] The Lie Algebras in which Every Subspace Is Its Subalgebra
    Wu Ming-zhong (Department of Mathematics
    Communications in Mathematical Research, 2009, 25 (01) : 1 - 8
  • [44] ON THE SIMPLICITY OF LIE ALGEBRAS ASSOCIATED TO LEAVITT ALGEBRAS
    Abrams, Gene
    Funk-Neubauer, Darren
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4059 - 4069
  • [45] RINGS IN WHICH EVERY IDEAL CONTAINED IN THE SET OF ZERO-DIVISORS IS A D-IDEAL
    Anebri, Adam
    Mahdou, Najib
    Mimouni, Abdeslam
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (01): : 45 - 56
  • [46] Centers of Path Algebras, Cohn and Leavitt Path Algebras
    María G. Corrales García
    Dolores Martín Barquero
    Cándido Martín González
    Mercedes Siles Molina
    José F. Solanilla Hernández
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 1745 - 1767
  • [47] The dynamics of Leavitt path algebras
    Hazrat, R.
    JOURNAL OF ALGEBRA, 2013, 384 : 242 - 266
  • [48] Centers of Path Algebras, Cohn and Leavitt Path Algebras
    Corrales Garcia, Maria G.
    Martin Barquero, Dolores
    Martin Gonzalez, Candido
    Siles Molina, Mercedes
    Solanilla Hernandez, Jose F.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (04) : 1745 - 1767
  • [49] Commutator Leavitt Path Algebras
    Mesyan, Zachary
    ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (05) : 1207 - 1232
  • [50] Leavitt Path Algebras Preface
    Abrams, Gene
    Ara, Pere
    Siles Molina, Mercedes
    LEAVITT PATH ALGEBRAS, 2017, 2191 : VII - +