Hysteretic model and seismic performance of a self-centering brace equipped with energy absorbing steel plate clusters

被引:5
|
作者
Liu, Jiawang [1 ]
Qiu, Canxing [1 ]
Zhang, Yichen [2 ]
Liu, Hang [3 ]
Du, Xiuli [1 ]
机构
[1] Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
[2] Univ Bristol, Dept Civil Engn, Bristol BS8 1TR, England
[3] Beijing Bldg Construct Res Inst Co Ltd, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-centering brace; Hysteretic model; Energy dissipation; Seismic performance; Residual inter-story drift; SHAPE-MEMORY ALLOY; BEHAVIOR; DESIGN; FRAMES; CONNECTIONS; TESTS; VALIDATION; BUILDINGS; RESPONSES;
D O I
10.1016/j.istruc.2023.105153
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The use of self-centering (SC) devices has been recognized as a promising strategy to improve the seismic resilience of structures, owing to their capacities for SC and energy dissipation (ED). This paper presents a comprehensive study on a SC brace (SCB) equipped with energy absorbing steel plate (EASP) clusters. Firstly, the configuration and deformation mode of the SCB were described. Then, a hysteretic model of the SCB was proposed based on the Bouc-Wen model, and the behavior of the SCB was described in detail. The accuracy of the hysteretic model was subsequently verified by experimental results. On the basis of this, the theoretical analysis was carried out to evaluate the effect of the design parameters on the hysteresis performance of the SCB. The results show that the ratio between the activation force of the SC system and the yield force of the ED system (rho) has a significant impact on the hysteresis performance of the SCB. As the value of rho increases, the SC capability of the SCB increases, but the ED capacity decreases. Finally, the seismic performance of the steel frame which adopts the SCB was evaluated using nonlinear response history analysis. The results indicate that the SCB with a rho value of 1.0 can achieve a comparable structural deformation response with a buckling restrained braced (BRB) frame, and the residual drift of the SCB frame is less than 0.2% under ground motions of varying hazard levels.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Hysteretic Behavior of Assembled Self-Centering Buckling-Restrained Brace
    Zhang C.
    Guo X.
    Zhu S.
    Gao S.
    Tongji Daxue Xuebao/Journal of Tongji University, 2021, 49 (01): : 8 - 19
  • [22] Self-centering steel plate shear walls for improving seismic resilience
    Clayton, Patricia M.
    Dowden, Daniel M.
    Li, Chao-Hsien
    Berman, Jeffrey W.
    Bruneau, Michel
    Lowes, Laura N.
    Tsai, Keh-Chuan
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2016, 10 (03) : 283 - 290
  • [23] Seismic demand assessment of self-centering steel plate shear walls
    Jalali, S. A.
    Darvishan, E.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2019, 162
  • [24] Mechanics of a variable damping self-centering brace: Seismic performance and failure modes
    Xie, Xing-Si
    Xu, Long-He
    Li, Zhong-Xian
    STEEL AND COMPOSITE STRUCTURES, 2019, 31 (02): : 149 - 158
  • [25] Self-centering steel plate shear walls for improving seismic resilience
    Patricia M. Clayton
    Daniel M. Dowden
    Chao-Hsien Li
    Jeffrey W. Berman
    Michel Bruneau
    Laura N. Lowes
    Keh-Chuan Tsai
    Frontiers of Structural and Civil Engineering, 2016, 10 : 283 - 290
  • [26] Self-centering steel plate shear walls for improving seismic resilience
    Patricia MCLAYTON
    Daniel MDOWDEN
    ChaoHsien LI
    Jeffrey WBERMAN
    Michel BRUNEAU
    Laura NLOWES
    KehChuan TSAI
    Frontiers of Structural and Civil Engineering, 2016, 10 (03) : 283 - 290
  • [27] Hysteretic and seismic performance of dual self-centering variable friction damper braces
    Wang, Yongwei
    Zeng, Bin
    Zhou, Zhen
    Xie, Qin
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2021, 147
  • [28] Study on seismic performance of prefabricated self-centering steel frame
    Yun, Chen
    Chao, Chen
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2021, 182
  • [29] Seismic performance of resilient self-centering bridge piers equipped with SMA bars
    Kocakaplan, Sedef
    Ahmadi, Ehsan
    Kashani, Mohammad M.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-BRIDGE ENGINEERING, 2024,
  • [30] Influence of shape memory alloy brace design parameters on seismic performance of self-centering steel frame buildings
    Shi, Fei
    Ozbulut, Osman E.
    Zhou, Yun
    STRUCTURAL CONTROL & HEALTH MONITORING, 2020, 27 (01):