Hysteretic model and seismic performance of a self-centering brace equipped with energy absorbing steel plate clusters

被引:5
|
作者
Liu, Jiawang [1 ]
Qiu, Canxing [1 ]
Zhang, Yichen [2 ]
Liu, Hang [3 ]
Du, Xiuli [1 ]
机构
[1] Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
[2] Univ Bristol, Dept Civil Engn, Bristol BS8 1TR, England
[3] Beijing Bldg Construct Res Inst Co Ltd, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-centering brace; Hysteretic model; Energy dissipation; Seismic performance; Residual inter-story drift; SHAPE-MEMORY ALLOY; BEHAVIOR; DESIGN; FRAMES; CONNECTIONS; TESTS; VALIDATION; BUILDINGS; RESPONSES;
D O I
10.1016/j.istruc.2023.105153
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The use of self-centering (SC) devices has been recognized as a promising strategy to improve the seismic resilience of structures, owing to their capacities for SC and energy dissipation (ED). This paper presents a comprehensive study on a SC brace (SCB) equipped with energy absorbing steel plate (EASP) clusters. Firstly, the configuration and deformation mode of the SCB were described. Then, a hysteretic model of the SCB was proposed based on the Bouc-Wen model, and the behavior of the SCB was described in detail. The accuracy of the hysteretic model was subsequently verified by experimental results. On the basis of this, the theoretical analysis was carried out to evaluate the effect of the design parameters on the hysteresis performance of the SCB. The results show that the ratio between the activation force of the SC system and the yield force of the ED system (rho) has a significant impact on the hysteresis performance of the SCB. As the value of rho increases, the SC capability of the SCB increases, but the ED capacity decreases. Finally, the seismic performance of the steel frame which adopts the SCB was evaluated using nonlinear response history analysis. The results indicate that the SCB with a rho value of 1.0 can achieve a comparable structural deformation response with a buckling restrained braced (BRB) frame, and the residual drift of the SCB frame is less than 0.2% under ground motions of varying hazard levels.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters
    Liu, Jiawang
    Qiu, Canxing
    STEEL AND COMPOSITE STRUCTURES, 2023, 47 (04): : 523 - 537
  • [2] Numerical analysis of self-centering energy dissipation brace with arc steel plate for seismic resistance
    Huang, Hua
    Zhang, Fantao
    Zhang, Wei
    Guo, Mengxue
    Urushadze, Shota
    Wu, Guochao
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2019, 125
  • [3] Study on the hysteretic performance of a self-centering composite damping energy dissipation brace
    Xu, Longhe
    Yang, Zhibo
    Xie, Xingsi
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (14): : 29 - 36
  • [4] Seismic Design and Performance of Self-Centering Steel Plate Shear Walls
    Clayton, Patricia M.
    Berman, Jeffrey W.
    Lowes, Laura N.
    JOURNAL OF STRUCTURAL ENGINEERING, 2012, 138 (01) : 22 - 30
  • [5] Hysteretic model and experimental validation of a variable damping self-centering brace
    Xie, Xingsi
    Xu, Longhe
    Li, Zhongxian
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2020, 167
  • [6] Experimental study and finite element simulation on hysteretic performance of self-centering energy dissipation brace
    Xu L.
    Yao S.
    2018, Science Press (39): : 158 - 165
  • [7] Hysteretic Behavior of Steel Plate Shear Wall with Self-Centering Energy Dissipation Braces
    Xu L.
    Liu J.
    Xu, Longhe (lhxu@bjtu.edu.cn), 2018, Tianjin University (51): : 949 - 956
  • [8] Seismic Response of Resilient Steel Frame with Self-Centering SMA Brace
    Hu, Shujun
    Chang, Liqing
    Zhang, Bo
    Zeng, Sizhi
    Tang, Fenghua
    Zhi, Qing
    INTERNATIONAL JOURNAL OF STEEL STRUCTURES, 2023, 23 (06) : 1587 - 1601
  • [9] Hysteretic Performance of Disc Spring-Steel Tendon Self-centering Buckling-restrained Brace
    Lu, Junkai
    Dai, Shoukun
    Xu, Guoshan
    Li, Wenpeng
    Li, Jinping
    Li, Yifei
    Xu, Xingzhe
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2024, 51 (07): : 83 - 94
  • [10] Seismic Response of Resilient Steel Frame with Self-Centering SMA Brace
    Shujun Hu
    Liqing Chang
    Bo Zhang
    Sizhi Zeng
    Fenghua Tang
    Qing Zhi
    International Journal of Steel Structures, 2023, 23 : 1587 - 1601