On the Jones polynomial modulo primes

被引:0
|
作者
Aiello, Valeriano [1 ]
Baader, Sebastian [1 ]
Ferretti, Livio [1 ]
机构
[1] Univ Bern, Sidlerstr 5, CH-3012 Bern, Switzerland
关键词
Jones polynomial; knot;
D O I
10.1017/S0017089523000253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive an upper bound on the density of Jones polynomials of knots modulo a prime number $p$ , within a sufficiently large degree range: $4/p<^>7$ . As an application, we classify knot Jones polynomials modulo two of span up to eight.
引用
收藏
页码:730 / 734
页数:5
相关论文
共 50 条
  • [31] POLYNOMIAL PATTERNS IN THE PRIMES
    Tao, Terence
    Ziegler, Tamar
    FORUM OF MATHEMATICS PI, 2018, 6
  • [32] THE TANGENT FUNCTION AND POWER RESIDUES MODULO PRIMES
    Sun, Zhi-Wei
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) : 971 - 978
  • [33] On the moments of torsion points modulo primes and their applications
    Akbary, Amir
    Wong, Peng-Jie
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (04) : 1029 - 1045
  • [34] A REMARK ON AX THEOREM ON SOLVABILITY MODULO PRIMES
    VANDENDRIES, L
    MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (01) : 65 - 70
  • [35] Congruences of multipartition functions modulo powers of primes
    William Y. C. Chen
    Daniel K. Du
    Qing-Hu Hou
    Lisa H. Sun
    The Ramanujan Journal, 2014, 35 : 1 - 19
  • [36] INTEGER POLYNOMIALS THAT ARE REDUCIBLE MODULO ALL PRIMES
    BRANDL, R
    AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (04): : 286 - 288
  • [37] The tangent function and power residues modulo primes
    Zhi-Wei Sun
    Czechoslovak Mathematical Journal, 2023, 73 : 971 - 978
  • [38] A new theorem on quadratic residues modulo primes
    Houa, Qing-Hu
    Panb, Hao
    Sun, Zhi-Wei
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 1065 - 1069
  • [39] Nonvanishing of the partition function modulo small primes
    Boylan, Matthew
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [40] The residue of p(N) modulo small primes
    Ono, K
    RAMANUJAN JOURNAL, 1998, 2 (1-2): : 47 - 54