One-dimensional harmonic chain model of vibration-mode matching in solid-liquid interfacial thermal transport

被引:1
|
作者
Matsubara, Hiroki [1 ]
Surblys, Donatas [1 ]
Ohara, Taku [1 ]
机构
[1] Tohoku Univ, Inst Fluid Sci, 2-1-1 Katahira,Aoba Ku, Sendai 9808577, Japan
关键词
MOLECULAR-DYNAMICS;
D O I
10.1103/PhysRevE.107.024103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Understanding the atomistic mechanism of interfacial thermal transport at solid-liquid interfaces is a key challenge in thermal management at the nanoscale. A recent molecular-dynamics study demonstrated that interfacial thermal resistance (ITR) at the interface between a solid and a surfactant solution can be minimized by adjusting the molecular mass of the surfactant. In the present study, we explain the mechanism of this ITR minimization in view of vibration-mode matching using a one-dimensional (1D) harmonic chain model of a solid-liquid interface having an interfacial adsorption layer of surfactant molecules. The equation of motion for the 1D chain is described by a classical Langevin equation and is analytically solved by the nonequilibrium Green's function (NEGF) method. The resultant ITR is expressed in a form of vibrational matching, and its relationship to the overlap of the vibrational density of states is also discussed. The analysis leads to a conclusion that the damping coefficient ?I in the Langevin equation should be a finite and sufficiently large value to represent the rapid damping of vibration modes at solid-liquid interfaces. This conclusion provides a clue to seamlessly extend the conventional NEGF-phonon transmission picture of solid-solid interfacial thermal transport, which assumes ?I to be infinitesimal, to solid-liquid interfaces.
引用
收藏
页数:11
相关论文
共 48 条
  • [31] Gegenbauer wavelet collocation method to analyze one-dimensional solid-liquid phase change in a functionally graded material with liquid fraction distribution
    Shah, Nehad Ali
    Kumar, Narinder
    Yadav, Harish Chandra
    Chaurasiya, Vikas
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2025, 162
  • [32] A surface curvature oscillation model for vapour–liquid–solid growth of periodic one-dimensional nanostructures
    Hui Wang
    Jian-Tao Wang
    Ze-Xian Cao
    Wen-Jun Zhang
    Chun-Sing Lee
    Shuit-Tong Lee
    Xiao-Hong Zhang
    Nature Communications, 6
  • [33] A surface curvature oscillation model for vapour-liquid-solid growth of periodic one-dimensional nanostructures
    Wang, Hui
    Wang, Jian-Tao
    Cao, Ze-Xian
    Zhang, Wen-Jun
    Lee, Chun-Sing
    Lee, Shuit-Tong
    Zhang, Xiao-Hong
    NATURE COMMUNICATIONS, 2015, 6
  • [34] Analytical model for one-dimensional transient transport of organic contaminants in composite liner considering thermal diffusion
    Jiang, Wenhao
    Li, Jiangshan
    Huang, Xiao
    Cheng, Xin
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2023, 56 (09): : 146 - 188
  • [35] One-dimensional analytical model for contaminant transport through CCL under thermal diffusion and its application
    Zhang C.
    Huang J.
    Li X.
    Xie H.
    Chen Y.
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2023, 45 (03): : 541 - 550
  • [36] A molecular dynamics study on the solid-liquid polymer interface: insight into the effect of surface roughness scale and polymer chain length on interfacial thermal resistance
    Luo, Qing-Yao
    Surblys, Donatas
    Matsubara, Hiroki
    Ohara, Taku
    MOLECULAR PHYSICS, 2024, 122 (18)
  • [37] Thermal expansion effects on the one-dimensional liquid-solid phase transition in high temperature phase change materials
    Santiago Acosta, Ruben Dario
    Antonio Otero, Jose
    Hernandez Cooper, Ernesto Manuel
    Perez-Alvarez, Rolando
    AIP ADVANCES, 2019, 9 (02)
  • [38] ONE-DIMENSIONAL MODEL FOR THE PREDICTION OF IMPACT DYNAMICS OF A SHEAR-THINNING LIQUID DROP ON DRY SOLID SURFACES
    An, Sang Mo
    Lee, Sang Yong
    ATOMIZATION AND SPRAYS, 2012, 22 (05) : 371 - 389
  • [39] Parameter uncertainty with flow variation of the one-dimensional solute transport model for small streams using Markov chain Monte Carlo
    Rana, S. M. Masud
    Boccelli, Dominic L.
    Scott, Durelle T.
    Hester, Erich T.
    JOURNAL OF HYDROLOGY, 2019, 575 : 1145 - 1154
  • [40] Constant mass model for the liquid-solid phase transition on a one-dimensional Stefan problem: Transient and steady state regimes
    Santiago, Ruben D.
    Hernandez, Ernesto M.
    Otero, Jose A.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2017, 118 : 40 - 52