Cyber-agricultural systems for crop breeding and sustainable production

被引:12
|
作者
Sarkar, Soumik [1 ,2 ]
Ganapathysubramanian, Baskar [1 ,2 ]
Singh, Arti [4 ]
Fotouhi, Fateme [1 ,2 ]
Kar, Soumyashree [5 ]
Nagasubramanian, Koushik [3 ]
Chowdhary, Girish [6 ,7 ]
Das, Sajal K. [8 ]
Kantor, George [9 ]
Krishnamurthy, Adarsh [1 ]
Merchant, Nirav [10 ]
Singh, Asheesh K. [4 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Elect Engn, Ames, IA USA
[4] Iowa State Univ, Dept Agron, Ames, IA 50011 USA
[5] Univ Southern Mississippi, Hattiesburg, MS USA
[6] Univ Illinois, Dept Agr & Biol Engn, Urbana, IL USA
[7] Univ Illinois, Dept Comp Sci, Urbana, IL USA
[8] Missouri Univ Sci & Technol, Dept Comp Sci, Rolla, MO USA
[9] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA USA
[10] Univ Arizona, Data Sci Inst, Tucson, AZ USA
基金
美国国家科学基金会; 美国食品与农业研究所;
关键词
DIGITAL TWIN; DATA FUSION; ENERGY-EFFICIENT; PHYSICAL SYSTEMS; ROBOT NAVIGATION; INDUSTRY; 4.0; LARGE-SCALE; ROOT; ARCHITECTURE; FOG;
D O I
10.1016/j.tplants.2023.08.001
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The cyber-agricultural system (CAS) represents an overarching framework of agriculture that leverages recent advances in ubiquitous sensing, artificial intelligence, smart actuators, and scalable cyberinfrastructure (CI) in both breeding and production agriculture. We discuss the recent progress and perspective of the three fundamental components of CAS - sensing, modeling, and actuation - and the emerging concept of agricultural digital twins (DTs). We also discuss how scalable CI is becoming a key enabler of smart agriculture. In this review we shed light on the significance of CAS in revolutionizing crop breeding and production by enhancing efficiency, productivity, sustainability, and resilience to changing climate. Finally, we identify underexplored and promising future directions for CAS research and development.
引用
收藏
页码:130 / 149
页数:20
相关论文
共 50 条
  • [41] Dynamic cropping systems for sustainable crop production in the northern great plains
    Tanaka, D. L.
    Krupinsky, J. M.
    Merrill, S. D.
    Liebig, M. A.
    Hanson, J. D.
    AGRONOMY JOURNAL, 2007, 99 (04) : 904 - 911
  • [42] Bacterial endophytes: Potential role in developing sustainable systems of crop production
    Sturz, AV
    Christie, BR
    Nowak, J
    CRITICAL REVIEWS IN PLANT SCIENCES, 2000, 19 (01) : 1 - 30
  • [43] Exploring hidden pathways to sustainable manufacturing for cyber-physical production systems
    Pedone, Gianfranco
    Vancza, Jozsef
    Szaller, Adam
    HELIYON, 2024, 10 (08)
  • [45] Sustainable Optimization of Agricultural Production
    Manos, Basil
    Chatzinikolaou, Parthena
    Kiomourtzi, Fedra
    4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND DEVELOPMENT- ICESD 2013, 2013, 5 : 410 - 415
  • [46] Tomato Breeding for Sustainable Crop Systems: High Levels of Zingiberene Providing Resistance to Multiple Arthropods
    Freitas de Oliveira, Joao Ronaldo
    Vilela de Resende, Juliano Tadeu
    de Lima Filho, Renato Barros
    Roberto, Sergio Ruffo
    da Silva, Paulo Roberto
    Rech, Caroline
    Nardi, Cristiane
    HORTICULTURAE, 2020, 6 (02) : 1 - 14
  • [47] Seaweed compost for agricultural crop production
    Andrew J. Cole
    David A. Roberts
    Alan L. Garside
    Rocky de Nys
    Nicholas A. Paul
    Journal of Applied Phycology, 2016, 28 : 629 - 642
  • [48] Developing sustainable agricultural production systems for the 21st century
    Resource: Engineering & Technology for Sustainable World, 1996, 3 (01):
  • [49] Using Bacteria and Fungi as Plant Biostimulants for Sustainable Agricultural Production Systems
    Shahrajabian M.H.
    Cheng Q.
    Sun W.
    Recent Patents on Biotechnology, 2023, 17 (03) : 206 - 244
  • [50] Suitability of Biodegradable Plastic Mulches for Organic and Sustainable Agricultural Production Systems
    Miles, Carol
    DeVetter, Lisa
    Ghimire, Shuresh
    Hayes, Douglas G.
    HORTSCIENCE, 2017, 52 (01) : 10 - 15