Cyber-agricultural systems for crop breeding and sustainable production

被引:12
|
作者
Sarkar, Soumik [1 ,2 ]
Ganapathysubramanian, Baskar [1 ,2 ]
Singh, Arti [4 ]
Fotouhi, Fateme [1 ,2 ]
Kar, Soumyashree [5 ]
Nagasubramanian, Koushik [3 ]
Chowdhary, Girish [6 ,7 ]
Das, Sajal K. [8 ]
Kantor, George [9 ]
Krishnamurthy, Adarsh [1 ]
Merchant, Nirav [10 ]
Singh, Asheesh K. [4 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Elect Engn, Ames, IA USA
[4] Iowa State Univ, Dept Agron, Ames, IA 50011 USA
[5] Univ Southern Mississippi, Hattiesburg, MS USA
[6] Univ Illinois, Dept Agr & Biol Engn, Urbana, IL USA
[7] Univ Illinois, Dept Comp Sci, Urbana, IL USA
[8] Missouri Univ Sci & Technol, Dept Comp Sci, Rolla, MO USA
[9] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA USA
[10] Univ Arizona, Data Sci Inst, Tucson, AZ USA
基金
美国国家科学基金会; 美国食品与农业研究所;
关键词
DIGITAL TWIN; DATA FUSION; ENERGY-EFFICIENT; PHYSICAL SYSTEMS; ROBOT NAVIGATION; INDUSTRY; 4.0; LARGE-SCALE; ROOT; ARCHITECTURE; FOG;
D O I
10.1016/j.tplants.2023.08.001
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The cyber-agricultural system (CAS) represents an overarching framework of agriculture that leverages recent advances in ubiquitous sensing, artificial intelligence, smart actuators, and scalable cyberinfrastructure (CI) in both breeding and production agriculture. We discuss the recent progress and perspective of the three fundamental components of CAS - sensing, modeling, and actuation - and the emerging concept of agricultural digital twins (DTs). We also discuss how scalable CI is becoming a key enabler of smart agriculture. In this review we shed light on the significance of CAS in revolutionizing crop breeding and production by enhancing efficiency, productivity, sustainability, and resilience to changing climate. Finally, we identify underexplored and promising future directions for CAS research and development.
引用
收藏
页码:130 / 149
页数:20
相关论文
共 50 条
  • [1] Sustainable agricultural crop production by endophytic actinobacteria
    Franco, Christopher
    JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S290 - S290
  • [2] The exploitation of crop allelopathy in sustainable agricultural production
    Khanh, TD
    Chung, MI
    Xuan, TD
    Tawata, S
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2005, 191 (03) : 172 - 184
  • [3] Sustainable agricultural production systems
    Martinez Castillo, Roger
    TECNOLOGIA EN MARCHA, 2009, 22 (02): : 23 - 39
  • [4] Sustainable agricultural production systems
    Martinez-Castillo, Roger
    TECNOLOGIA EN MARCHA, 2016, : 70 - 85
  • [5] Plant Breeding Supporting the Sustainable Field Crop Production
    Varga, Balazs
    SUSTAINABILITY, 2023, 15 (05)
  • [6] Genetic Crop Improvement: A Guarantee for Sustainable Agricultural Production
    Wan, Jianmin
    ENGINEERING, 2018, 4 (04) : 431 - 432
  • [7] A Cyber Physical Systems Approach for Agricultural Enterprise and Sustainable Agriculture
    Dumitrache, Joan
    Caramihai, Simona Iuliana
    Sacala, Ioan Stefan
    Moisescu, Mihnea Alexandru
    2017 21ST INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE (CSCS), 2017, : 477 - 484
  • [8] Sustainable Crop Production Systems and Human Nutrition
    Roberts, Daniel P.
    Mattoo, Autar K.
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2019, 3
  • [9] Saffron, an alternative crop for sustainable agricultural systems. A review
    F. Gresta
    G. M. Lombardo
    L. Siracusa
    G. Ruberto
    Agronomy for Sustainable Development, 2008, 28 : 95 - 112
  • [10] Editorial: Omics technology in agriculture: molecular breeding for sustainable crop production
    Chen, Zhiwen
    Grover, Corrinne E.
    Ge, Xiaoyang
    Shangguan, Xiaoxia
    FRONTIERS IN PLANT SCIENCE, 2023, 14