Longitudinal assessment of bleomycin-induced pulmonary fibrosis by evaluating TGF-β1/Smad2, Nrf2 signaling and metabolomic analysis in mice

被引:5
|
作者
Washimkar, Kaveri R. [1 ,3 ]
Tomar, Manendra Singh [4 ]
Kulkarni, Chirag [2 ,3 ]
Verma, Shobhit [1 ,3 ]
Shrivastava, Ashutosh [4 ]
Chattopadhyay, Naibedya [2 ,3 ]
Mugale, Madhav Nilakanth [1 ,3 ,5 ]
机构
[1] CSIR Cent Drug Res Inst CSIR CDRI, Div Toxicol & Expt Med, Lucknow 226031, India
[2] CSIR Cent Drug Res Inst CSIR CDRI, Div Endocrinol, Lucknow 226031, India
[3] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[4] King Georges Med Univ, Fac Med, Ctr Adv Res, Lucknow 226003, India
[5] CSIR Cent Drug Res Inst, Lucknow 226031, Uttar Pradesh, India
关键词
Bleomycin; Metabolomics; Nrf2; Pulmonary fibrosis; TGF-ss1/Smad signaling; INDUCED LUNG FIBROSIS; OXIDATIVE STRESS; INDUCTION; INJURY; MODEL;
D O I
10.1016/j.lfs.2023.122064
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Introduction: Pulmonary fibrosis (PF) is characterized by an increase in collagen synthesis and deposition of extracellular matrix. Several factors, including transforming growth factor-ss1 (TGF-ss1), mothers against decapentaplegic homolog family proteins (Smad), and alpha-smooth muscle actin (a-SMA) trigger extracellular matrix (ECM) accumulation, fibroblast to myofibroblasts conversion, and epithelial-to-mesenchymal-transition (EMT) leading to PF. However, the role of cellular defense mechanisms such as the role of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling during the onset and progression of PF is not understood completely.Aim: The present study aims to analyze the involvement of TGF-ss1/Smad signaling, and Nrf2 in the EMT and metabolic alterations that promote fibrosis in a time-dependent manner using bleomycin (BLM)-induced PF model in C57BL/6 mice.Key findings: Histopathological studies revealed loss of lung architecture and increased collagen deposition in BLM-exposed mice. BLM upregulated TGF-ss1/Smad signaling and a-SMA at all time-points. The gradual increase in the accumulation of a-SMA and collagen implied the progression of PF. BLM exposure raises Nrf2 throughout each specified time-point, which suggests that Nrf2 activation might be responsible for TGF-ss1-induced EMT and the development of PF. Further, metabolomic studies linked the development of PF to alterations in metabolic pathways. The pentose phosphate pathway (PPP) was consistently enriched across all the time-points. Additionally, alterations in 22 commonly enriched pathways, associated with fatty acid (FA) and amino acid metabolism were observed in 30-and 60-days.Significance: This study elucidates the association of TGF-ss1/Smad and Nrf2 signaling in the EMT and metabolic alterations associated with the etiology and progression of PF.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Peptide PD29 treats bleomycin-induced pulmonary fibrosis by inhibiting the TGF-β/smad signaling pathway
    Sun, Qingbo
    Hu, Jialiang
    Yu, Pengcheng
    Zhu, Zhaohao
    Yu, Ruihe
    Ge, Chuang
    Li, Chencheng
    Wu, Guiyue
    Lin, Bingjing
    Liu, Guangpan
    Liu, Meng
    Bian, Huan
    Xu, Hanmei
    Jia, Shaochang
    EXPERIMENTAL LUNG RESEARCH, 2019, 45 (5-6) : 123 - 134
  • [32] Kangfuxin Oral Liquid Attenuates Bleomycin-Induced Pulmonary Fibrosis via the TGF-β1/Smad Pathway
    Yao, Huan
    Wei, Shujun
    Xiang, Yongjing
    Wu, Ziqiang
    Liu, Weiwei
    Wang, Baojia
    Li, Xueping
    Xu, Huan
    Zhao, Juan
    Gao, Yongxiang
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2019, 2019
  • [33] Deglycosylated Azithromycin Attenuates Bleomycin-Induced Pulmonary Fibrosis via the TGF-β1 Signaling Pathway
    Ruan, Hao
    Gao, Shaoyan
    Li, Shuangling
    Luan, Jiaoyan
    Jiang, Qiuyan
    Li, Xiaohe
    Yin, Huijun
    Zhou, Honggang
    Yang, Cheng
    MOLECULES, 2021, 26 (09):
  • [34] Regorafenib-Attenuated, Bleomycin-Induced Pulmonary Fibrosis by Inhibiting the TGF-β1 Signaling Pathway
    Li, Xiaohe
    Ma, Ling
    Huang, Kai
    Wei, Yuli
    Long, Shida
    Liu, Qinyi
    Zhang, Deqiang
    Wu, Shuyang
    Wang, Wenrui
    Yang, Guang
    Zhou, Honggang
    Yang, Cheng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (04) : 1 - 16
  • [35] Pazopanib attenuated bleomycin-induced pulmonary fibrosis via suppressing TGF-β1 signaling pathway
    Huang, Kai
    Zhang, Qianyi
    Ruan, Hao
    Guo, Chunyu
    Wu, Shuyang
    Liu, Qinyi
    Zhang, Deqiang
    Long, Shida
    Wang, Wenrui
    Wu, Zhou
    Tian, Li
    Gao, Shuangyan
    Zhao, Huanan
    Gu, Xiaoting
    Yin, Huijun
    Yang, Cheng
    JOURNAL OF THORACIC DISEASE, 2024, 16 (04) : 2244 - 2258
  • [36] The compound artemisinin-hydroxychloroquine ameliorates bleomycin-induced pulmonary fibrosis in rats by inhibiting TGF-81/ Smad2/3 signaling pathway
    Wang, Zhaojia
    Liu, Min
    Ai, Ying
    Zheng, Shaoqin
    Chen, Yingyi
    Du, Hujun
    Yuan, Shijia
    Guo, Xueying
    Yuan, Yueming
    Li, Guoming
    Song, Jianping
    Deng, Changsheng
    PULMONARY PHARMACOLOGY & THERAPEUTICS, 2023, 83
  • [37] SULFORAPHANE PREVENT BLEOMYCIN-INDUCED PULMONARY FIBROSIS BY DECREASING OXIDATIVE STRESS VIA NRF2 ACTIVATION IN MICE
    Yan, Bingdi
    Yang, Junling
    Ren, Jin
    Gao, Rong
    Ma, Tiangang
    Zhang, Qinghua
    RESPIROLOGY, 2015, 20 : 83 - 83
  • [38] Evogliptin attenuates bleomycin-induced lung fibrosis via inhibiting TGF-β/Smad signaling in fibroblast
    Ba, Y-D
    Sun, J-H
    Zhao, X-X
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (20) : 10790 - 10798
  • [39] Amelioration of bleomycin-induced pulmonary fibrosis via TGF-β-induced Smad and non-Smad signaling pathways in galectin-9-deficient mice and fibroblast cells
    Hsu, Yu-An
    Chang, Ching-Yao
    Lan, Joung-Liang
    Li, Ju-Pi
    Lin, Hui-Ju
    Chen, Chih-Sheng
    Wan, Lei
    Liu, Fu-Tong
    JOURNAL OF BIOMEDICAL SCIENCE, 2020, 27 (01)
  • [40] Amelioration of bleomycin-induced pulmonary fibrosis via TGF-β-induced Smad and non-Smad signaling pathways in galectin-9-deficient mice and fibroblast cells
    Yu-An Hsu
    Ching-Yao Chang
    Joung-Liang Lan
    Ju-Pi Li
    Hui-Ju Lin
    Chih-Sheng Chen
    Lei Wan
    Fu-Tong Liu
    Journal of Biomedical Science, 27