Longitudinal assessment of bleomycin-induced pulmonary fibrosis by evaluating TGF-β1/Smad2, Nrf2 signaling and metabolomic analysis in mice

被引:5
|
作者
Washimkar, Kaveri R. [1 ,3 ]
Tomar, Manendra Singh [4 ]
Kulkarni, Chirag [2 ,3 ]
Verma, Shobhit [1 ,3 ]
Shrivastava, Ashutosh [4 ]
Chattopadhyay, Naibedya [2 ,3 ]
Mugale, Madhav Nilakanth [1 ,3 ,5 ]
机构
[1] CSIR Cent Drug Res Inst CSIR CDRI, Div Toxicol & Expt Med, Lucknow 226031, India
[2] CSIR Cent Drug Res Inst CSIR CDRI, Div Endocrinol, Lucknow 226031, India
[3] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[4] King Georges Med Univ, Fac Med, Ctr Adv Res, Lucknow 226003, India
[5] CSIR Cent Drug Res Inst, Lucknow 226031, Uttar Pradesh, India
关键词
Bleomycin; Metabolomics; Nrf2; Pulmonary fibrosis; TGF-ss1/Smad signaling; INDUCED LUNG FIBROSIS; OXIDATIVE STRESS; INDUCTION; INJURY; MODEL;
D O I
10.1016/j.lfs.2023.122064
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Introduction: Pulmonary fibrosis (PF) is characterized by an increase in collagen synthesis and deposition of extracellular matrix. Several factors, including transforming growth factor-ss1 (TGF-ss1), mothers against decapentaplegic homolog family proteins (Smad), and alpha-smooth muscle actin (a-SMA) trigger extracellular matrix (ECM) accumulation, fibroblast to myofibroblasts conversion, and epithelial-to-mesenchymal-transition (EMT) leading to PF. However, the role of cellular defense mechanisms such as the role of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling during the onset and progression of PF is not understood completely.Aim: The present study aims to analyze the involvement of TGF-ss1/Smad signaling, and Nrf2 in the EMT and metabolic alterations that promote fibrosis in a time-dependent manner using bleomycin (BLM)-induced PF model in C57BL/6 mice.Key findings: Histopathological studies revealed loss of lung architecture and increased collagen deposition in BLM-exposed mice. BLM upregulated TGF-ss1/Smad signaling and a-SMA at all time-points. The gradual increase in the accumulation of a-SMA and collagen implied the progression of PF. BLM exposure raises Nrf2 throughout each specified time-point, which suggests that Nrf2 activation might be responsible for TGF-ss1-induced EMT and the development of PF. Further, metabolomic studies linked the development of PF to alterations in metabolic pathways. The pentose phosphate pathway (PPP) was consistently enriched across all the time-points. Additionally, alterations in 22 commonly enriched pathways, associated with fatty acid (FA) and amino acid metabolism were observed in 30-and 60-days.Significance: This study elucidates the association of TGF-ss1/Smad and Nrf2 signaling in the EMT and metabolic alterations associated with the etiology and progression of PF.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Bufei huoxue capsule alleviates bleomycin-induced pulmonary fibrosis in mice via TGF-β1/Smad2/3 signaling
    Li, Yuanyuan
    Qin, Wenguang
    Liang, Qiuling
    Zeng, Jiamin
    Yang, Qiong
    Chen, Yuqin
    Wang, Jian
    Lu, Wenju
    JOURNAL OF ETHNOPHARMACOLOGY, 2023, 316
  • [2] Stevioside attenuates bleomycin-induced pulmonary fibrosis by activating the Nrf2 pathway and inhibiting the NF-κB and TGF-β1/Smad2/3 pathways
    Hao, Wei
    Yu, Ting-ting
    Zuo, Dong-ze
    Hu, Heng-zhao
    Zhou, Ping-ping
    EXPERIMENTAL LUNG RESEARCH, 2023, 49 (01) : 205 - 219
  • [3] Opg May Protect Bleomycin-Induced Pulmonary Fibrosis By Inhibiting Smad2/3 Dependent Tgf-β1 Activation
    Weng, D.
    Li, H.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 193
  • [4] Opg May Protect Bleomycin-Induced Pulmonary Fibrosis By Inhibiting Smad2/3 Dependent Tgf-β1 Activation
    Weng, D.
    Li, H.
    Ge, B.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 191
  • [5] Opg May Protect Bleomycin-Induced Pulmonary Fibrosis By Inhibiting Smad2/3 Dependent Tgf-β1 Activation
    Weng, D.
    Zheng, R.
    Li, H.
    Ge, B.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [6] OPG may protect bleomycin-induced pulmonary fibrosis by inhibiting SMAD2/3 dependent TGF-β1 activation
    Weng, D.
    Li, H.
    Ge, B.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 : 1097 - 1097
  • [7] Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice
    Guo, Jiasen
    Fang, Yinshan
    Jiang, Fangxin
    Li, Lian
    Zhou, Honggang
    Xu, Xiaojun
    Ning, Wen
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2019, 864
  • [8] Role of Leukotriene Receptor Antagonist on TGF-β and Smad2 Signaling in Bleomycin Induced Pulmonary Fibrosis.
    Lee, W. Y.
    Lee, B. G.
    Kim, S. T.
    Kim, C. J.
    Seo, H. S.
    Park, H. S.
    Park, J. Y.
    Kim, S. H.
    Yong, S. J.
    Shin, K. C.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2009, 179
  • [9] ACPA Alleviates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting TGF-β-Smad2/3 Signaling-Mediated Lung Fibroblast Activation
    Chen, Dongxin
    Tang, Huirong
    Jiang, Hongchao
    Sun, Lei
    Zhao, Wenjuan
    Qian, Feng
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [10] Silencing FHL2 inhibits bleomycin-induced pulmonary fibrosis through the TGF-β1/Smad signaling pathway
    Shi, Mengkun
    Cui, Huixia
    Shi, Jialun
    Mei, Yunqing
    EXPERIMENTAL CELL RESEARCH, 2023, 423 (02)