Complex Drivers of Riparian Soil Oxygen Variability Revealed Using Self-Organizing Maps

被引:1
|
作者
Lancellotti, Brittany V. [1 ,2 ]
Underwood, Kristen L. [3 ]
Perdrial, Julia N. [4 ]
Schroth, Andrew W. [4 ]
Roy, Eric D. [1 ,3 ]
Adair, Carol E. [1 ]
机构
[1] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05405 USA
[2] Univ Virgin Isl, Virgin Isl EPSCoR, Kingshill, VI USA
[3] Univ Vermont, Civil & Environm Engn, Burlington, VT USA
[4] Univ Vermont, Dept Geol, Burlington, VT USA
基金
美国国家科学基金会;
关键词
self-organizing map; clustering algorithm; riparian zone; soil oxygen; soil moisture; high frequency data; WATER-UPTAKE; DENITRIFICATION; RESPIRATION; DYNAMICS; PATTERNS; MOISTURE; AVAILABILITY; TEMPERATURE; REDUCTION; DIFFUSION;
D O I
10.1029/2022WR034022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Oxygen (O-2) regulates soil reduction-oxidation processes and therefore modulates biogeochemical cycles. The difficulties associated with accurately characterizing soil O-2 variability have prompted the use of soil moisture as a proxy for O-2, as O-2 diffusion into soil water is much slower than in soil air. The use of soil moisture alone as a proxy measurement for O-2 could result in inaccurate O-2 estimations. For example, O-2 may remain high during cool months when soil respiration rates are low. We analyzed high-frequency sensor data (e.g., soil moisture, CO2, gas-phase soil pore O-2) with a machine learning technique, the Self-Organizing Map, to pinpoint suites of soil conditions associated with contrasting O-2 regimes. At two riparian sites in northern Vermont, we found that O-2 levels varied seasonally, and with soil moisture. For example, 47% of low O-2 levels were associated with wet and cool soil conditions, whereas 32% were associated with dry and warm conditions. Contrastingly, the majority (62%) of high O-2 conditions occurred under dry and warm conditions. High soil moisture levels did not always lead to low O-2, as 38% of high O-2 values occurred under wet and cool conditions. Our results highlight challenges with predicting soil O-2 solely based on water content, as variable combinations of soil and hydrologic conditions can complicate the relationship between water content and O-2. This indicates that process-based ecosystem and denitrification models that rely solely on soil moisture to estimate O-2 may need to incorporate other site and climate-specific drivers to accurately predict soil O-2.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [21] A Causal Model Using Self-Organizing Maps
    Chung, Younjin
    Takatsuka, Masahiro
    NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 591 - 600
  • [22] SOM of SOMs: Self-organizing map which maps a group of self-organizing maps
    Furukawa, T
    ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 391 - 396
  • [23] THE SELF-ORGANIZING FEATURE MAPS
    KOHONEN, T
    MAKISARA, K
    PHYSICA SCRIPTA, 1989, 39 (01): : 168 - 172
  • [24] Decentralizing Self-organizing Maps
    Khan, Md Mohiuddin
    Kasmarik, Kathryn
    Garratt, Matt
    AI 2021: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13151 : 480 - 493
  • [25] SELF-ORGANIZING SEMANTIC MAPS
    RITTER, H
    KOHONEN, T
    BIOLOGICAL CYBERNETICS, 1989, 61 (04) : 241 - 254
  • [26] Recursive self-organizing maps
    Voegtlin, T
    NEURAL NETWORKS, 2002, 15 (8-9) : 979 - 991
  • [27] Robust self-organizing maps
    Allende, H
    Moreno, S
    Rogel, C
    Salas, R
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, 2004, 3287 : 179 - 186
  • [28] Recursive self-organizing maps
    Voegtlin, T
    Dominey, PF
    ADVANCES IN SELF-ORGANISING MAPS, 2001, : 210 - 215
  • [29] Extensions of self-organizing maps
    Trutschl, M
    Cvek, U
    ISIS International Symposium on Interdisciplinary Science, 2005, 755 : 204 - 214
  • [30] Self-organizing maps and SVD
    Dvorsky, Jiri
    DEXA 2007: 18TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2007, : 143 - 147