Improvement of Machine Learning-Based Modelling of Container Ship's Main Particulars with Synthetic Data

被引:3
|
作者
Majnaric, Darin [1 ]
Baressi Segota, Sandi [2 ]
Andelic, Nikola [2 ]
Andric, Jerolim [1 ]
机构
[1] Univ Zagreb, Fac Mech Engn & Naval Architecture, Ul Ivana Lucica 5, Zagreb 10000, Croatia
[2] Univ Rijeka, Fac Engn, Vukovarska 58, Rijeka 51000, Croatia
关键词
container ships; copulas; main particulars; concept ship design; synthetic data; NEURAL-NETWORK;
D O I
10.3390/jmse12020273
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
One of the main problems in the application of machine learning techniques is the need for large amounts of data necessary to obtain a well-generalizing model. This is exacerbated for studies in which it is not possible to access large amounts of data-for example, in the case of ship main data modelling, where a limited amount of real-world data (ship main data) is available for dataset creation. In this paper, a synthetic data generation technique has been applied to generate a large amount of synthetic data points regarding container ships' main particulars. Models are trained using a multilayer perceptron (MLP) regressor on both original and synthetic data mixed with original data points. Then, the authors validate the performance of the obtained models on the original data and conclude whether a synthetic-data-based approach can be used to develop models in instances where the amount of data on ship main particulars may be limited. The results demonstrate an improvement across almost all outputs, ranging between 0.01 and 0.21 when evaluated using the coefficient of determination (R2) and between 0.27% and 3.43% when models are evaluated with mean absolute percentage error (MAPE). This indicates that the application of synthetic data can indeed be used for the improvement of ML-based model performance. The presented study demonstrates that the application of ML-based syncretization techniques can provide significant improvements to the process of ML-based determination of a ship's main particulars at the early design stage. This paper suggests that, in cases where only a small dataset is available, artificial neural networks (ANN) can still be effectively employed to derive early-stage design values for the main particulars through the use of synthetic data.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Machine Learning-Based Sentiment Analysis of Twitter Data
    Karthiga, M.
    Kumar, Sathish G.
    Aravindhraj, N.
    Priyanka, S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATION ENGINEERING (ICACCE-2019), 2019,
  • [22] Machine Learning-Based Embedding for Discontinuous Time Series Machine Data
    Aremu, Oluseun Omotola
    Hyland-Wood, David
    McAree, Peter Ross
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1321 - 1326
  • [23] Ship Classification Based on AIS Data and Machine Learning Methods
    Huang, I-Lun
    Lee, Man-Chun
    Nieh, Chung-Yuan
    Huang, Juan-Chen
    ELECTRONICS, 2024, 13 (01)
  • [24] Machine Learning-Based Adaptive Synthetic Sampling Technique for Intrusion Detection
    Zakariah, Mohammed
    AlQahtani, Salman A. A.
    Al-Rakhami, Mabrook S. S.
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [25] Learning nodes: machine learning-based energy and data management strategy
    Yunmin Kim
    Tae-Jin Lee
    EURASIP Journal on Wireless Communications and Networking, 2021
  • [26] A Machine Learning-Based Approach for Multi-AGV Dispatching at Automated Container Terminals
    Gao, Yinping
    Chen, Chun-Hsien
    Chang, Daofang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [27] Learning nodes: machine learning-based energy and data management strategy
    Kim, Yunmin
    Lee, Tae-Jin
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2021, 2021 (01)
  • [28] Deep learning-based vehicle detection with synthetic image data
    Wang, Ye
    Deng, Weiwen
    Liu, Zhenyi
    Wang, Jinsong
    IET INTELLIGENT TRANSPORT SYSTEMS, 2019, 13 (07) : 1097 - 1105
  • [29] A Deep Learning-Based Pipeline for the Generation of Synthetic Tabular Data
    Panfilo, Daniele
    Boudewijn, Alexander
    Saccani, Sebastiano
    Coser, Andrea
    Svara, Borut
    Chauvenet, Carlo Rossi
    Mami, Ciro Antonio
    Medvet, Eric
    IEEE ACCESS, 2023, 11 : 63306 - 63323
  • [30] Learning-Based Seismic Velocity Inversion with Synthetic and Field Data
    Farris, Stuart
    Clapp, Robert
    Araya-Polo, Mauricio
    SENSORS, 2023, 23 (19)