Machine learning-ready remote sensing data for Maya archaeology

被引:4
|
作者
Kokalj, Ziga [1 ]
Dzeroski, Saso [2 ,3 ]
Sprajc, Ivan [1 ]
Stajdohar, Jasmina [1 ]
Draksler, Andrej [1 ]
Somrak, Maja [1 ,2 ]
机构
[1] Slovenian Acad Sci & Arts ZRC SAZU, Res Ctr, Novi Trg 2, Ljubljana 1000, Slovenia
[2] Jozef Stefan Int Postgrad Sch, Informat & Commun Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
[3] Jozef Stefan Inst, Jamova Cesta 39, Ljubljana 1000, Slovenia
关键词
AIRBORNE MAPPING LIDAR; LANDSCAPE; CAMPECHE; CARACOL; MODELS;
D O I
10.1038/s41597-023-02455-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In our study, we set out to collect a multimodal annotated dataset for remote sensing of Maya archaeology, that is suitable for deep learning. The dataset covers the area around Chactun, one of the largest ancient Maya urban centres in the central Yucatan Peninsula. The dataset includes five types of data records: raster visualisations and canopy height model from airborne laser scanning (ALS) data, Sentinel-1 and Sentinel-2 satellite data, and manual data annotations. The manual annotations (used as binary masks) represent three different types of ancient Maya structures (class labels: buildings, platforms, and aguadas - artificial reservoirs) within the study area, their exact locations, and boundaries. The dataset is ready for use with machine learning, including convolutional neural networks (CNNs) for object recognition, object localization (detection), and semantic segmentation. We would like to provide this dataset to help more research teams develop their own computer vision models for investigations of Maya archaeology or improve existing ones.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] ESTIMATING OCEAN SUBSURFACE SALINITY FROM REMOTE SENSING DATA BY MACHINE LEARNING
    Su, Hua
    Yang, Xin
    Yan, Xiao-Hai
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8139 - 8142
  • [32] Machine learning with remote sensing image datasets
    Petrovska, Biserka
    Atanasova-Pacemska, Tatjana
    Stojkovik, Natasa
    Stojanova, Aleksandra
    Kocaleva, Mirjana
    Informatica (Slovenia), 2021, 45 (03): : 347 - 358
  • [33] Application of Machine Learning and Remote Sensing in Hydrology
    Mohammadi, Babak
    SUSTAINABILITY, 2022, 14 (13)
  • [34] Machine Learning with Remote Sensing Image Datasets
    Petrovska, Biserka
    Atanasova-Pacemska, Tatjana
    Stojkovik, Natasa
    Stojanova, Aleksandra
    Kocaleva, Mirjana
    INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2021, 45 (03): : 347 - 358
  • [35] A New Strategy to Fuse Remote Sensing Data and Geochemical Data with Different Machine Learning Methods
    Bai, Shi
    Zhao, Jie
    REMOTE SENSING, 2023, 15 (04)
  • [36] The application of remote sensing in archaeology
    Buzov, M
    NEW STRATEGIES FOR EUROPEAN REMOTE SENSING, 2005, : 737 - 740
  • [37] Satellite Remote Sensing for Archaeology
    Kincey, Mark
    HISTORIC ENVIRONMENT-POLICY & PRACTICE, 2010, 1 (01): : 105 - 107
  • [38] REMOTE-SENSING IN ARCHAEOLOGY
    MADRY, SLH
    ARCHAEOLOGY, 1983, 36 (03) : 18 - 19
  • [39] REMOTE SENSING APPLICATIONS IN ARCHAEOLOGY
    Orlando, Pietro
    Villa, Benedetto
    ARCHEOLOGIA E CALCOLATORI, 2011, 22 : 147 - 168
  • [40] SATELLITE REMOTE SENSING FOR ARCHAEOLOGY
    Wilson, Penny
    ARCHAEOLOGICAL JOURNAL, 2010, 167 (01) : 256 - 257