Machine learning-ready remote sensing data for Maya archaeology

被引:4
|
作者
Kokalj, Ziga [1 ]
Dzeroski, Saso [2 ,3 ]
Sprajc, Ivan [1 ]
Stajdohar, Jasmina [1 ]
Draksler, Andrej [1 ]
Somrak, Maja [1 ,2 ]
机构
[1] Slovenian Acad Sci & Arts ZRC SAZU, Res Ctr, Novi Trg 2, Ljubljana 1000, Slovenia
[2] Jozef Stefan Int Postgrad Sch, Informat & Commun Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
[3] Jozef Stefan Inst, Jamova Cesta 39, Ljubljana 1000, Slovenia
关键词
AIRBORNE MAPPING LIDAR; LANDSCAPE; CAMPECHE; CARACOL; MODELS;
D O I
10.1038/s41597-023-02455-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In our study, we set out to collect a multimodal annotated dataset for remote sensing of Maya archaeology, that is suitable for deep learning. The dataset covers the area around Chactun, one of the largest ancient Maya urban centres in the central Yucatan Peninsula. The dataset includes five types of data records: raster visualisations and canopy height model from airborne laser scanning (ALS) data, Sentinel-1 and Sentinel-2 satellite data, and manual data annotations. The manual annotations (used as binary masks) represent three different types of ancient Maya structures (class labels: buildings, platforms, and aguadas - artificial reservoirs) within the study area, their exact locations, and boundaries. The dataset is ready for use with machine learning, including convolutional neural networks (CNNs) for object recognition, object localization (detection), and semantic segmentation. We would like to provide this dataset to help more research teams develop their own computer vision models for investigations of Maya archaeology or improve existing ones.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Machine learning-ready remote sensing data for Maya archaeology
    Žiga Kokalj
    Sašo Džeroski
    Ivan Šprajc
    Jasmina Štajdohar
    Andrej Draksler
    Maja Somrak
    Scientific Data, 10
  • [2] A Machine Learning-ready Data Set for Exoplanet Atmospheric Retrieval
    Zorzan, Simone
    Soboczenski, Frank
    O'Beirne, Molly D.
    Himes, Michael D.
    Lund, Michael B.
    van Eyken, Julian C.
    Arney, Giada N.
    Villanueva, Geronimo L.
    Mascaro, Massimo
    Domagal-Goldman, Shawn D.
    Baydin, Atilim Gunes
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2025, 277 (02):
  • [3] Enabling machine learning-ready HPC ensembles with Merlin
    Peterson, J. Luc
    Bay, Ben
    Koning, Joe
    Robinson, Peter
    Semler, Jessica
    White, Jeremy
    Anirudh, Rushil
    Athey, Kevin
    Bremer, Peer-Timo
    Di Natale, Francesco
    Fox, David
    Gaffney, Jim A.
    Jacobs, Sam A.
    Kailkhura, Bhavya
    Kustowski, Bogdan
    Langer, Steven
    Spears, Brian
    Thiagarajan, Jayaraman
    Van Essen, Brian
    Yeom, Jae-Seung
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 131 : 255 - 268
  • [4] Building Flexible, Scalable, and Machine Learning-Ready Multimodal Oncology Datasets
    Tripathi, Aakash
    Waqas, Asim
    Venkatesan, Kavya
    Yilmaz, Yasin
    Rasool, Ghulam
    SENSORS, 2024, 24 (05)
  • [5] MACHINE LEARNING IN REMOTE SENSING DATA PROCESSING
    Camps-Valls, Gustavo
    2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 216 - 221
  • [6] An Unsupervised Machine Learning Approach in Remote Sensing Data
    Mazzei, Mauro
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT III: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 1-4, 2019, PROCEEDINGS, PART III, 2019, 11621 : 435 - 447
  • [7] HPMPdb: A machine learning-ready database of protein molecular phenotypes associated to human missense variants
    Raimondi, Daniele
    Codice, Francesco
    Orlando, Gabriele
    Schymkowitz, Joost
    Rousseau, Frederic
    Moreau, Yves
    CURRENT RESEARCH IN STRUCTURAL BIOLOGY, 2022, 4 : 167 - 174
  • [8] Automatic stitching and segmentation of roots images for the generation of labelled deep learning-ready data
    Reno, V
    Nitti, M.
    Dibari, P.
    Summerer, S.
    Petrozza, A.
    Cellini, F.
    Dimauro, G.
    Maglietta, R.
    MULTIMODAL SENSING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS II, 2021, 11785
  • [9] Geological Applications of Machine Learning in Hyperspectral Remote Sensing Data
    Tse, C. H.
    Li, Yi-liang
    Lam, Edmund Y.
    IMAGE PROCESSING: MACHINE VISION APPLICATIONS VIII, 2015, 9405
  • [10] Editorial Note: Machine Learning for Remote Sensing Data Processing
    Multimedia Tools and Applications, 2017, 76 : 22917 - 22917