Children's dental panoramic radiographs dataset for caries segmentation and dental disease detection

被引:25
|
作者
Zhang, Yifan [1 ,2 ,3 ,4 ,5 ]
Ye, Fan [1 ]
Chen, Lingxiao [1 ]
Xu, Feng [1 ]
Chen, Xiaodiao [1 ,6 ]
Wu, Hongkun [2 ]
Cao, Mingguo [5 ]
Li, Yunxiang [7 ]
Wang, Yaqi [6 ]
Huang, Xingru [1 ,8 ]
机构
[1] Hangzhou Dianzi Univ, Hangzhou 310018, Peoples R China
[2] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, State Key Lab Oral Dis, Chengdu 310000, Peoples R China
[3] Tohoku Univ, Grad Sch Dent, Div Adv Prosthet Dent, 310000, Sendai, Japan
[4] Lishui Univ, Hangzhou Geriatr Stomatol Hosp, Hangzhou Dent Hosp Grp, Sch Med, Hangzhou 310000, Peoples R China
[5] Lishui Univ, Sch Med & Hlth Sci, Lishui 323000, Zhejiang, Peoples R China
[6] Commun Univ Zhejiang, Coll Media Engn, Hangzhou 310018, Peoples R China
[7] Univ Texas Southwestern Med Ctr, Dept Radiat Oncol, Dallas, TX 75390 USA
[8] Queen Mary Univ London, Sch Elect Engn & Comp Sci, Mile End Rd, London E1 4NS, England
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41597-023-02237-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When dentists see pediatric patients with more complex tooth development than adults during tooth replacement, they need to manually determine the patient's disease with the help of preoperative dental panoramic radiographs. To the best of our knowledge, there is no international public dataset for children's teeth and only a few datasets for adults' teeth, which limits the development of deep learning algorithms for segmenting teeth and automatically analyzing diseases. Therefore, we collected dental panoramic radiographs and cases from 106 pediatric patients aged 2 to 13 years old, and with the help of the efficient and intelligent interactive segmentation annotation software EISeg (Efficient Interactive Segmentation) and the image annotation software LabelMe. We propose the world's first dataset of children's dental panoramic radiographs for caries segmentation and dental disease detection by segmenting and detecting annotations. In addition, another 93 dental panoramic radiographs of pediatric patients, together with our three internationally published adult dental datasets with a total of 2,692 images, were collected and made into a segmentation dataset suitable for deep learning.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Caries Detection in Panoramic Dental X-ray Images
    Oliveira, Joao
    Proenca, Hugo
    COMPUTATIONAL VISION AND MEDICAL IMAGE PROCESSING: RECENT TRENDS, 2011, 19 : 175 - 190
  • [32] Deep learning for early dental caries detection in bitewing radiographs
    Lee, Shinae
    Oh, Sang-il
    Jo, Junik
    Kang, Sumi
    Shin, Yooseok
    Park, Jeong-won
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [33] Deep learning for early dental caries detection in bitewing radiographs
    Shinae Lee
    Sang-il Oh
    Junik Jo
    Sumi Kang
    Yooseok Shin
    Jeong-won Park
    Scientific Reports, 11
  • [34] Automated detection of dental restorations using deep learning on panoramic radiographs
    Celik, Berrin
    Celik, Mahmut Emin
    DENTOMAXILLOFACIAL RADIOLOGY, 2022, 51 (08)
  • [35] Improvement of the Detection Method for Carotid Artery Calcification in Dental Panoramic Radiographs
    Shinjo, Katsuyuki
    Muneyasu, Mitsuji
    Fujita, Kenji
    Asano, Akira
    Taguchi, Akira
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2009), 2009, : 119 - +
  • [36] Automating Dental Condition Detection on Panoramic Radiographs: Challenges, Pitfalls, and Opportunities
    Muresanu, Sorana
    Hedesiu, Mihaela
    Iacob, Liviu
    Eftimie, Radu
    Olariu, Eliza
    Dinu, Cristian
    Jacobs, Reinhilde
    DIAGNOSTICS, 2024, 14 (20)
  • [37] Dimensional measurements on the human dental panoramic radiographs
    Catic, A
    Celebic, A
    Valentic-Peruzovic, M
    Catovic, A
    Kuna, T
    COLLEGIUM ANTROPOLOGICUM, 1998, 22 : 139 - 145
  • [38] Automatic detection of teeth and dental treatment patterns on dental panoramic radiographs using deep neural networks
    Choi, Hye-Ran
    Siadari, Thomhert Suprapto
    Kim, Jo-Eun
    Huh, Kyung-Hoe
    Yi, Won-Jin
    Lee, Sam-Sun
    Heo, Min-Suk
    FORENSIC SCIENCES RESEARCH, 2022, 7 (03) : 456 - 466
  • [39] COMPUTER-AIDED DETECTION OF APPROXIMAL CARIES LESIONS IN DENTAL RADIOGRAPHS
    VANDERSTELT, PF
    VANPAPENDRECHT, F
    GERAETS, WGM
    HUISKENS, R
    JOURNAL OF DENTAL RESEARCH, 1994, 73 : 297 - 297
  • [40] Automatic computation of mandibular indices in dental panoramic radiographs for early osteoporosis detection
    Aliaga, Ignacio
    Vera, Vicente
    Vera, Maria
    Garcia, Enrique
    Pedrera, Maria
    Pajares, Gonzalo
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 103