Exponential and strong ergodicity for one-dimensional time-changed symmetric stable processes

被引:2
|
作者
Wang, T. A. O. [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Stable process; time change; Dirichlet eigenvalue; strong ergodicity; exponential ergodicity; Green operator; EXISTENCE; FORMS;
D O I
10.3150/22-BEJ1469
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain explicit criteria for both exponential ergodicity and strong ergodicity for one-dimensional time-changed symmetric stable processes with alpha is an element of (1,2). Explicit lower bounds for ergodic convergence rates are given.
引用
收藏
页码:580 / 596
页数:17
相关论文
共 50 条
  • [21] Ergodicity of one-dimensional regime-switching diffusion processes
    JingHai Shao
    Science China Mathematics, 2014, 57 : 2407 - 2414
  • [22] Time-changed Poisson processes of order k
    Sengar, Ayushi S.
    Maheshwari, A.
    Upadhye, N. S.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (01) : 124 - 148
  • [23] Variance swaps on time-changed Levy processes
    Carr, Peter
    Lee, Roger
    Wu, Liuren
    FINANCE AND STOCHASTICS, 2012, 16 (02) : 335 - 355
  • [24] Holder continuity of semigroups for time changed symmetric stable processes
    Luo, Dejun
    Wang, Jian
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (01) : 109 - 121
  • [25] A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Levy process
    Scalas, Enrico
    Viles, Noelia
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 385 - 410
  • [26] Minimal q-entropy martingale measures for exponential time-changed Lévy processes
    Stefan Kassberger
    Thomas Liebmann
    Finance and Stochastics, 2011, 15 : 117 - 140
  • [27] On the Laws of First Hitting Times of Points for One-dimensional Symmetric Stable Levy Processes
    Yano, Kouji
    Yano, Yuko
    Yor, Marc
    SEMINAIRE DE PROBABILITES XLII, 2009, 1979 : 187 - 227
  • [28] Convergence of Processes Time-Changed by Gaussian Multiplicative Chaos
    Ooi, Takumu
    POTENTIAL ANALYSIS, 2025,
  • [29] POISSON APPROXIMATIONS FOR TIME-CHANGED POINT-PROCESSES
    BROWN, TC
    NAIR, MG
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1988, 29 (02) : 247 - 256
  • [30] Exponential and strong ergodicity for Markov processes with an application to queues
    Yuanyuan Liu
    Zhenting Hou
    Chinese Annals of Mathematics, Series B, 2008, 29 : 199 - 206